|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Carolina Corpus""" |
|
|
|
from collections import defaultdict |
|
from lxml import etree |
|
import os |
|
import datasets |
|
import gzip |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_HOMEPAGE = "https://sites.usp.br/corpuscarolina/" |
|
|
|
|
|
_DESCRIPTION = """ |
|
Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a |
|
robust volume of texts of varied typology in contemporary Brazilian Portuguese |
|
(1970-). |
|
""" |
|
|
|
|
|
_CITATION = r""" |
|
@misc{crespo2023carolina, |
|
title={Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information}, |
|
author={Maria Clara Ramos Morales Crespo and |
|
Maria Lina de Souza Jeannine Rocha and |
|
Mariana Lourenço Sturzeneker and |
|
Felipe Ribas Serras and |
|
Guilherme Lamartine de Mello and |
|
Aline Silva Costa and |
|
Mayara Feliciano Palma and |
|
Renata Morais Mesquita and |
|
Raquel de Paula Guets and |
|
Mariana Marques da Silva and |
|
Marcelo Finger and |
|
Maria Clara Paixão de Sousa and |
|
Cristiane Namiuti and |
|
Vanessa Martins do Monte}, |
|
year={2023}, |
|
eprint={2303.16098}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
|
|
_LICENSE = """ |
|
The Open Corpus for Linguistics and Artificial Intelligence (Carolina) was |
|
compiled for academic purposes, namely linguistic and computational analysis. |
|
It is composed of texts assembled in various digital repositories, whose |
|
licenses are multiple and therefore should be observed when making use of the |
|
corpus. The Carolina headers are licensed under Creative Commons |
|
Attribution-NonCommercial-ShareAlike 4.0 International." |
|
""" |
|
|
|
|
|
def _taxonomies(): |
|
"""Creates a map between taxonomy code and name |
|
|
|
Returns |
|
------- |
|
dict |
|
The dictionary of codes and names. |
|
""" |
|
return dict( |
|
dat="datasets_and_other_corpora", |
|
jud="judicial_branch", |
|
leg="legislative_branch", |
|
pub="public_domain_works", |
|
soc="social_media", |
|
uni="university_domains", |
|
wik="wikis", |
|
) |
|
|
|
|
|
_VERSION = "1.3.0" |
|
_CORPUS_URL = "corpus/{tax}/" |
|
_CHECKSUM_FNAME = _CORPUS_URL + "checksum.sha256" |
|
|
|
|
|
class CarolinaConfig(datasets.BuilderConfig): |
|
"""Carolina Configuration.""" |
|
def __init__(self, taxonomy: str = None, **kwargs): |
|
"""BuilderConfig for Carolina |
|
|
|
Parameters |
|
---------- |
|
taxonomy : str |
|
The taxonomy code (3 letters). The code defines the taxonomy |
|
to download. If `None`, all taxonomies will be downloaded. |
|
**kwargs |
|
Arguments passed to super. |
|
""" |
|
|
|
if taxonomy is None: |
|
taxonomy = "all" |
|
elif taxonomy != "all" and taxonomy not in _taxonomies(): |
|
raise ValueError(f"Invalid taxonomy: {taxonomy}") |
|
|
|
|
|
description = "Carolina corpus." |
|
if taxonomy == "all": |
|
name = "carolina" |
|
description += " Using all taxonomies." |
|
else: |
|
name = _taxonomies()[taxonomy] |
|
description += f" Using taxonomy {taxonomy}" |
|
|
|
super(CarolinaConfig, self).__init__( |
|
name=name, description=description, **kwargs) |
|
|
|
|
|
self.taxonomy = taxonomy |
|
self.version = datasets.Version(_VERSION) |
|
|
|
|
|
class Carolina(datasets.GeneratorBasedBuilder): |
|
"""Carolina Downloader and Builder""" |
|
|
|
BUILDER_CONFIG_CLASS = CarolinaConfig |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
"meta": datasets.Value("string"), |
|
"text": datasets.Value("string") |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
features=features, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
if self.config.taxonomy == "all": |
|
taxonomies = _taxonomies().values() |
|
else: |
|
taxonomies = [_taxonomies()[self.config.taxonomy]] |
|
|
|
|
|
checksum_urls = {t: _CHECKSUM_FNAME.format(tax=t) for t in taxonomies} |
|
checksum_paths = dl_manager.download(checksum_urls) |
|
|
|
|
|
gzip_urls = list() |
|
for tax, cpath in checksum_paths.items(): |
|
tax_path = _CORPUS_URL.format(tax=tax) |
|
with open(cpath, encoding="utf-8") as cfile: |
|
for line in cfile: |
|
xml_tax_path = line.split()[1] |
|
zip_fname = xml_tax_path + ".gz" |
|
zip_fpath = os.path.join(tax_path, zip_fname) |
|
gzip_urls.append(zip_fpath) |
|
|
|
gzip_files = dl_manager.download(gzip_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="corpus", |
|
gen_kwargs={"filepaths": gzip_files} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
TEI_NS = "{http://www.tei-c.org/ns/1.0}" |
|
parser_params = dict( |
|
huge_tree=True, |
|
encoding="utf-8", |
|
tag=f"{TEI_NS}TEI" |
|
) |
|
|
|
_key = 0 |
|
for doc_path in filepaths: |
|
logger.info("generating examples from = %s", doc_path) |
|
with gzip.open(open(doc_path, "rb"), "rb") as gzip_file: |
|
for _, tei in etree.iterparse(gzip_file, **parser_params): |
|
header = tei.find(f"{TEI_NS}teiHeader") |
|
|
|
meta = etree.tostring( |
|
header, encoding="utf-8").decode("utf-8") |
|
text = ' '.join([e.text |
|
for e in tei.findall(f".//{TEI_NS}body/{TEI_NS}p") |
|
if e.text is not None |
|
]) |
|
|
|
yield _key, { |
|
"meta": meta, |
|
"text": text |
|
} |
|
_key += 1 |
|
|
|
gzip_file.close() |
|
|