# Copyright 2020 The HuggingFace Datasets Authors and the current dataset # script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Carolina Corpus""" from collections import defaultdict from lxml import etree import os import datasets import gzip logger = datasets.logging.get_logger(__name__) _HOMEPAGE = "https://sites.usp.br/corpuscarolina/" _DESCRIPTION = """ Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a robust volume of texts of varied typology in contemporary Brazilian Portuguese (1970-). """ _CITATION = r""" @misc{crespo2023carolina, title={Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information}, author={Maria Clara Ramos Morales Crespo and Maria Lina de Souza Jeannine Rocha and Mariana Lourenço Sturzeneker and Felipe Ribas Serras and Guilherme Lamartine de Mello and Aline Silva Costa and Mayara Feliciano Palma and Renata Morais Mesquita and Raquel de Paula Guets and Mariana Marques da Silva and Marcelo Finger and Maria Clara Paixão de Sousa and Cristiane Namiuti and Vanessa Martins do Monte}, year={2023}, eprint={2303.16098}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _LICENSE = """ The Open Corpus for Linguistics and Artificial Intelligence (Carolina) was compiled for academic purposes, namely linguistic and computational analysis. It is composed of texts assembled in various digital repositories, whose licenses are multiple and therefore should be observed when making use of the corpus. The Carolina headers are licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International." """ def _taxonomies(): """Creates a map between taxonomy code and name Returns ------- dict The dictionary of codes and names. """ return dict( dat="datasets_and_other_corpora", jud="judicial_branch", leg="legislative_branch", pub="public_domain_works", soc="social_media", uni="university_domains", wik="wikis", ) _VERSION = "1.3.0" _CORPUS_URL = "corpus/{tax}/" _CHECKSUM_FNAME = _CORPUS_URL + "checksum.sha256" class CarolinaConfig(datasets.BuilderConfig): """Carolina Configuration.""" def __init__(self, taxonomy: str = None, **kwargs): """BuilderConfig for Carolina Parameters ---------- taxonomy : str The taxonomy code (3 letters). The code defines the taxonomy to download. If `None`, all taxonomies will be downloaded. **kwargs Arguments passed to super. """ # validates taxonomy if taxonomy is None: taxonomy = "all" elif taxonomy != "all" and taxonomy not in _taxonomies(): raise ValueError(f"Invalid taxonomy: {taxonomy}") # custom name and description description = "Carolina corpus." if taxonomy == "all": name = "carolina" description += " Using all taxonomies." else: name = _taxonomies()[taxonomy] description += f" Using taxonomy {taxonomy}" super(CarolinaConfig, self).__init__( name=name, description=description, **kwargs) # Carolina attributes self.taxonomy = taxonomy self.version = datasets.Version(_VERSION) class Carolina(datasets.GeneratorBasedBuilder): """Carolina Downloader and Builder""" BUILDER_CONFIG_CLASS = CarolinaConfig def _info(self): features = datasets.Features({ "meta": datasets.Value("string"), "text": datasets.Value("string") }) return datasets.DatasetInfo( description=_DESCRIPTION, supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, features=features, license=_LICENSE ) def _split_generators(self, dl_manager): # list taxonomies to download if self.config.taxonomy == "all": taxonomies = _taxonomies().values() else: taxonomies = [_taxonomies()[self.config.taxonomy]] # download checksum files checksum_urls = {t: _CHECKSUM_FNAME.format(tax=t) for t in taxonomies} checksum_paths = dl_manager.download(checksum_urls) # prepare xml file name and zip urls gzip_urls = list() for tax, cpath in checksum_paths.items(): tax_path = _CORPUS_URL.format(tax=tax) with open(cpath, encoding="utf-8") as cfile: for line in cfile: xml_tax_path = line.split()[1] # xml file inside taxonomy zip_fname = xml_tax_path + ".gz" # zip file inside taxonomy zip_fpath = os.path.join(tax_path, zip_fname) # path inside corpus gzip_urls.append(zip_fpath) gzip_files = dl_manager.download(gzip_urls) return [ datasets.SplitGenerator( name="corpus", gen_kwargs={"filepaths": gzip_files} ) ] def _generate_examples(self, filepaths): TEI_NS = "{http://www.tei-c.org/ns/1.0}" parser_params = dict( huge_tree=True, encoding="utf-8", tag=f"{TEI_NS}TEI" ) _key = 0 for doc_path in filepaths: logger.info("generating examples from = %s", doc_path) with gzip.open(open(doc_path, "rb"), "rb") as gzip_file: for _, tei in etree.iterparse(gzip_file, **parser_params): header = tei.find(f"{TEI_NS}teiHeader") meta = etree.tostring( header, encoding="utf-8").decode("utf-8") text = ' '.join([e.text for e in tei.findall(f".//{TEI_NS}body/{TEI_NS}p") if e.text is not None ]) yield _key, { "meta": meta, "text": text } _key += 1 gzip_file.close()