File size: 5,601 Bytes
c5b8a78
 
 
f09ab08
c5b8a78
 
 
 
0fc3966
 
c215fa0
 
c5b8a78
0a0b00b
c5b8a78
 
 
 
 
0a0b00b
 
 
 
 
 
f09ab08
0a0b00b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b8a78
 
 
 
0a0b00b
c5b8a78
0a0b00b
3fa893d
0a0b00b
fd5b1fc
 
cf63bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e9cbee
cf63bc2
7e9cbee
593feea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf63bc2
593feea
 
 
 
 
 
 
 
 
 
 
 
 
c3c7027
 
cf63bc2
 
 
 
 
6f1d3ea
cf63bc2
 
 
 
 
2cb9642
c3c7027
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import csv
import json
import os
from datasets import GeneratorBasedBuilder, Features, Value, Sequence, SplitGenerator, BuilderConfig, DatasetInfo, Split, Image
import logging
import pandas as pd
from typing import Dict

CITATION = "@InProceedings{huggingface:dataset,title = {Reddit Climate Comment},author={Catherine Wang},year={2024}}"
_DESCRIPTION = "This new dataset is designed to solve this great NLP task and is crafted with a lot of care." 
_HOMEPAGE = "https://huggingface.co/datasets/cathw/reddit_climate_comment"
_LICENSE = "MIT"

_URL = "https://github.com/catherine-ywang/reddit_climate_comment_data/raw/main/climate_comments.csv.zip"

class NewDataset(GeneratorBasedBuilder):
    def _info(self):
        return DatasetInfo(
            description=_DESCRIPTION,
            features=Features({
         "id": Value("string"),
         "post_title": Value("string"),
         "post_author": Value("string"),
         "post_body": Value("string"),
         "post_url": Value("string"),
         "post_pic": Image(),
         "subreddit": Value("string"),
         "post_timestamp": Value("string"),
         "post_upvotes": Value("int32"),
         "post_permalink": Value("string"),
         "comments": Sequence({
             "CommentID": Value("string"),
             "CommentAuthor": Value("string"),
             "CommentBody": Value("string"),
             "CommentTimestamp": Value("string"),
             "CommentUpvotes": Value("int32"),
             "CommentPermalink": Value("string"),
             "replies": Sequence({
                 "ReplyID": Value("string"),
                 "ReplyAuthor": Value("string"),
                 "ReplyBody": Value("string"),
                 "ReplyTimestamp": Value("string"),
                 "ReplyUpvotes": Value("int32"),
                 "ReplyPermalink": Value("string"),
             })
         })
     }),
            homepage=_HOMEPAGE,
        )
    def _split_generators(self, dl_manager):
        path = dl_manager.download_and_extract(_URL)
        train_splits = SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": path+"/climate_comments.csv"})
        return [train_splits]
        
    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath)
        for column in df.columns:
            df[column] = df[column].replace({pd.NA: None})
        # Group the DataFrame by post ID
        grouped_df = df.groupby('PostID')

        for post_id, group in grouped_df:
            post_data = group.iloc[0]  # Get the data for the post

            post_title = post_data['PostTitle']
            post_author = post_data['PostAuthor']
            post_body = post_data['PostBody']
            post_url = post_data['PostUrl']
            post_pic = post_data['PostPic']
            subreddit = post_data['Subreddit']
            post_timestamp = post_data['PostTimestamp']
            post_upvotes = post_data['PostUpvotes']
            post_permalink = post_data['PostPermalink']

            comments = []

            # Iterate over each unique comment ID
            for comment_id in group['CommentID'].unique():
                comment_data = group[group['CommentID'] == comment_id].iloc[0]

                comment_author = comment_data['CommentAuthor']
                comment_body = comment_data['CommentBody']
                comment_timestamp = comment_data['CommentTimestamp']
                comment_upvotes = comment_data['CommentUpvotes']
                comment_permalink = comment_data['CommentPermalink']

                # Get all replies for the current comment
                replies = []
                reply_group = df[df['CommentID'] == comment_id]
                for _, reply_data in reply_group.iterrows():
                    reply_id = reply_data['ReplyID']
                    reply_author = reply_data['ReplyAuthor']
                    reply_body = reply_data['ReplyBody']
                    reply_timestamp = reply_data['ReplyTimestamp']
                    reply_upvotes = reply_data['ReplyUpvotes']
                    reply_permalink = reply_data['ReplyPermalink']

                    reply = {
                        "ReplyID": reply_id,
                        "ReplyAuthor": reply_author,
                        "ReplyBody": reply_body,
                        "ReplyTimestamp": reply_timestamp,
                        "ReplyUpvotes": reply_upvotes,
                        "ReplyPermalink": reply_permalink
                    }
                    replies.append(reply)

                # Add comment with its replies to the list
                comment = {
                    "CommentID": comment_id,
                    "CommentAuthor": comment_author,
                    "CommentBody": comment_body,
                    "CommentTimestamp": comment_timestamp,
                    "CommentUpvotes": comment_upvotes,
                    "CommentPermalink": comment_permalink,
                    "replies": replies
                }
                comments.append(comment)
            
            example = {
                "id": post_id,
                "post_title": post_title,
                "post_author": post_author,
                "post_body": post_body,
                "post_url": post_url,
                "post_pic": post_pic,
                "subreddit": subreddit,
                "post_timestamp": post_timestamp,
                "post_upvotes": post_upvotes,
                "post_permalink": post_permalink,
                "comments": comments
            }

            yield post_id, example