Datasets:
File size: 5,601 Bytes
c5b8a78 f09ab08 c5b8a78 0fc3966 c215fa0 c5b8a78 0a0b00b c5b8a78 0a0b00b f09ab08 0a0b00b c5b8a78 0a0b00b c5b8a78 0a0b00b 3fa893d 0a0b00b fd5b1fc cf63bc2 7e9cbee cf63bc2 7e9cbee 593feea cf63bc2 593feea c3c7027 cf63bc2 6f1d3ea cf63bc2 2cb9642 c3c7027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import csv
import json
import os
from datasets import GeneratorBasedBuilder, Features, Value, Sequence, SplitGenerator, BuilderConfig, DatasetInfo, Split, Image
import logging
import pandas as pd
from typing import Dict
CITATION = "@InProceedings{huggingface:dataset,title = {Reddit Climate Comment},author={Catherine Wang},year={2024}}"
_DESCRIPTION = "This new dataset is designed to solve this great NLP task and is crafted with a lot of care."
_HOMEPAGE = "https://huggingface.co/datasets/cathw/reddit_climate_comment"
_LICENSE = "MIT"
_URL = "https://github.com/catherine-ywang/reddit_climate_comment_data/raw/main/climate_comments.csv.zip"
class NewDataset(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
description=_DESCRIPTION,
features=Features({
"id": Value("string"),
"post_title": Value("string"),
"post_author": Value("string"),
"post_body": Value("string"),
"post_url": Value("string"),
"post_pic": Image(),
"subreddit": Value("string"),
"post_timestamp": Value("string"),
"post_upvotes": Value("int32"),
"post_permalink": Value("string"),
"comments": Sequence({
"CommentID": Value("string"),
"CommentAuthor": Value("string"),
"CommentBody": Value("string"),
"CommentTimestamp": Value("string"),
"CommentUpvotes": Value("int32"),
"CommentPermalink": Value("string"),
"replies": Sequence({
"ReplyID": Value("string"),
"ReplyAuthor": Value("string"),
"ReplyBody": Value("string"),
"ReplyTimestamp": Value("string"),
"ReplyUpvotes": Value("int32"),
"ReplyPermalink": Value("string"),
})
})
}),
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
path = dl_manager.download_and_extract(_URL)
train_splits = SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": path+"/climate_comments.csv"})
return [train_splits]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
for column in df.columns:
df[column] = df[column].replace({pd.NA: None})
# Group the DataFrame by post ID
grouped_df = df.groupby('PostID')
for post_id, group in grouped_df:
post_data = group.iloc[0] # Get the data for the post
post_title = post_data['PostTitle']
post_author = post_data['PostAuthor']
post_body = post_data['PostBody']
post_url = post_data['PostUrl']
post_pic = post_data['PostPic']
subreddit = post_data['Subreddit']
post_timestamp = post_data['PostTimestamp']
post_upvotes = post_data['PostUpvotes']
post_permalink = post_data['PostPermalink']
comments = []
# Iterate over each unique comment ID
for comment_id in group['CommentID'].unique():
comment_data = group[group['CommentID'] == comment_id].iloc[0]
comment_author = comment_data['CommentAuthor']
comment_body = comment_data['CommentBody']
comment_timestamp = comment_data['CommentTimestamp']
comment_upvotes = comment_data['CommentUpvotes']
comment_permalink = comment_data['CommentPermalink']
# Get all replies for the current comment
replies = []
reply_group = df[df['CommentID'] == comment_id]
for _, reply_data in reply_group.iterrows():
reply_id = reply_data['ReplyID']
reply_author = reply_data['ReplyAuthor']
reply_body = reply_data['ReplyBody']
reply_timestamp = reply_data['ReplyTimestamp']
reply_upvotes = reply_data['ReplyUpvotes']
reply_permalink = reply_data['ReplyPermalink']
reply = {
"ReplyID": reply_id,
"ReplyAuthor": reply_author,
"ReplyBody": reply_body,
"ReplyTimestamp": reply_timestamp,
"ReplyUpvotes": reply_upvotes,
"ReplyPermalink": reply_permalink
}
replies.append(reply)
# Add comment with its replies to the list
comment = {
"CommentID": comment_id,
"CommentAuthor": comment_author,
"CommentBody": comment_body,
"CommentTimestamp": comment_timestamp,
"CommentUpvotes": comment_upvotes,
"CommentPermalink": comment_permalink,
"replies": replies
}
comments.append(comment)
example = {
"id": post_id,
"post_title": post_title,
"post_author": post_author,
"post_body": post_body,
"post_url": post_url,
"post_pic": post_pic,
"subreddit": subreddit,
"post_timestamp": post_timestamp,
"post_upvotes": post_upvotes,
"post_permalink": post_permalink,
"comments": comments
}
yield post_id, example
|