Datasets:

Languages:
English
ArXiv:
License:
File size: 7,993 Bytes
f986fe7
4cbd76f
 
 
 
 
 
 
 
 
 
 
 
 
f986fe7
4cbd76f
 
699a7a9
4cbd76f
699a7a9
4cbd76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699a7a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cbd76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a33ba4
4cbd76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
- image-classification
language:
- en
tags:
- music
- art
pretty_name: Piano Sound Quality Dataset
size_categories:
- 10K<n<100K
viewer: false
---

# Dataset Card for Piano Sound Quality Dataset
The original dataset is sourced from the [Piano Sound Quality Dataset](https://ccmusic-database.github.io/en/database/ccm.html#shou1), which includes 12 full-range audio files in .wav/.mp3/.m4a format representing seven models of pianos: Kawai upright piano, Kawai grand piano, Young Change upright piano, Hsinghai upright piano, Grand Theatre Steinway piano, Steinway grand piano, and Pearl River upright piano. Additionally, there are 1,320 split monophonic audio files in .wav/.mp3/.m4a format, bringing the total number of files to 1,332. The dataset also includes a score sheet in .xls format containing subjective evaluations of piano sound quality provided by 29 participants with musical backgrounds.

Based on the aforementioned original dataset, after data processing, we constructed the [default subset](#default-subset-1) of the current integrated version of the dataset, and its data structure can be viewed in the [viewer](https://www.modelscope.cn/datasets/ccmusic-database/pianos/dataPeview). Due to the need to increase the dataset size and the absence of a popular piano brand, Yamaha, the default subset is expanded by recording an upright Yamaha piano into the [8_class subset](#8-class-subset). Since the current dataset has been validated by published articles, based on the 8_class subset, we adopted the data processing method for dataset evaluation from the article and constructed the [eval subset](#eval-subset-1), whose result has been shown in [pianos](https://www.modelscope.cn/models/ccmusic-database/pianos). Except for the default subset, the rest of the subsets are not represented in our paper. Below is a brief introduction to the data structure of each subset.

## Dataset Structure
### Default Subset
<table class="pianos">
    <tr>
        <th>audio</th>
        <th>mel</th>
        <th>label (8-class)</th>
        <th>pitch (88-class)</th>
    </tr>
    <tr>
        <td>.wav, 44100Hz</td>
        <td>.jpg, 44100Hz</td>
        <td>PearlRiver / YoungChang / Steinway-T / Hsinghai / Kawai / Steinway / Kawai-G / Yamaha</td>
        <td>88 pitches on piano</td>
    </tr>
    <tr>
        <td>...</td>
        <td>...</td>
        <td>...</td>
        <td>...</td>
    </tr>
</table>

### Eval Subset
<style>
  .pianos td {
    vertical-align: middle !important;
    text-align: center;
  }
  .pianos th {
    text-align: center;
  }
</style>
<table class="pianos">
    <tr>
        <th>mel</th>
        <th>label (8-class)</th>
        <th>pitch (88-class)</th>
    </tr>
    <tr>
        <td>.jpg, 0.18s 44100Hz</td>
        <td>PearlRiver / YoungChang / Steinway-T / Hsinghai / Kawai / Steinway / Kawai-G / Yamaha</td>
        <td>88 pitches on piano</td>
    </tr>
    <tr>
        <td>...</td>
        <td>...</td>
        <td>...</td>
    </tr>
</table>

<img src="https://www.modelscope.cn/api/v1/datasets/ccmusic-database/pianos/repo?Revision=master&FilePath=.%2Fdata%2Fpiano.png&View=true">

### Data Instances
.zip(.wav, jpg)

### Data Fields
```
1_PearlRiver
2_YoungChang
3_Steinway-T
4_Hsinghai
5_Kawai
6_Steinway
7_Kawai-G
8_Yamaha (For Non-default subset)
```

### Data Splits for Eval Subset
|       Split       |       Default        |       8_class       |        Eval         |
| :---------------: | :------------------: | :-----------------: | :-----------------: |
|    train(80%)     |         461          |         531         |        14678        |
|  validation(10%)  |          59          |         68          |        1835         |
|     test(10%)     |          60          |         69          |        1839         |
|       total       |         580          |         668         |        18352        |
| Total duration(s) | `2851.6933333333354` | `3247.941395833335` | `3247.941395833335` |

## Viewer
<https://www.modelscope.cn/datasets/ccmusic-database/pianos/dataPeview>

## Usage
### Default Subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/pianos", name="default")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

### 8-class Subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/pianos", name="8_classes")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

### Eval Subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/pianos", name="eval")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

## Maintenance
```bash
git clone git@hf.co:datasets/ccmusic-database/pianos
cd pianos
```

## Dataset Description
- **Homepage:** <https://ccmusic-database.github.io>
- **Repository:** <https://huggingface.co/datasets/CCMUSIC/pianos>
- **Paper:** <https://doi.org/10.5281/zenodo.5676893>
- **Leaderboard:** <https://www.modelscope.cn/datasets/ccmusic/pianos>
- **Point of Contact:** <https://arxiv.org/abs/2310.04722>

### Dataset Summary
Due to the need to increase the dataset size and the absence of a popular piano brand, Yamaha, the dataset is expanded by recording an upright Yamaha piano in [[1]](https://arxiv.org/pdf/2310.04722.pdf), in which the recording details can be found. This results in a total of 2,020 audio files. As models used in that article require a larger dataset, data augmentation was performed. The original audio was transformed into Mel spectrograms and sliced into 0.18-second segments, a parameter chosen based on empirical experience. This results in 18,745 spectrogram slices. Although 0.18 seconds may seem narrow, this duration is sufficient for the task at hand, as the classification of piano sound quality does not heavily rely on the temporal characteristics of the audio segments.

### Supported Tasks and Leaderboards
Piano Sound Classification, pitch detection

### Languages
English

## Dataset Creation
### Curation Rationale
Lack of a dataset for piano sound quality

### Source Data
#### Initial Data Collection and Normalization
Zhaorui Liu, Shaohua Ji, Monan Zhou
#### Who are the source language producers?
Students from CCMUSIC & CCOM

### Annotations
#### Annotation process
Students from CCMUSIC recorded different piano sounds and labeled them, and then a subjective survey of sound quality was conducted to score them.

#### Who are the annotators?
Students from CCMUSIC & CCOM

### Personal and Sensitive Information
Piano brands

## Considerations for Using the Data
### Social Impact of Dataset
Help develop piano sound quality scoring apps

### Discussion of Biases
Only for pianos

### Other Known Limitations
Lack of black keys for Steinway, data imbalance

## Additional Information
### Dataset Curators
Zijin Li

### Evaluation
[1] [Monan Zhou, Shangda Wu, Shaohua Ji, Zijin Li, and Wei Li. A Holistic Evaluation of Piano Sound Quality[C]//Proceedings of the 10th Conference on Sound and Music Technology (CSMT). Springer, Singapore, 2023.](https://arxiv.org/pdf/2310.04722.pdf)

(Note: this paper only uses the first 7 piano classes in the dataset, its future work has finished the 8-class evaluation)

### Citation Information
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
```

### Contributions
Provide a dataset for piano sound quality