Datasets:

Languages:
Hindi
ArXiv:
License:
File size: 4,733 Bytes
f0480f1
 
 
 
 
 
 
 
 
 
74b1501
f0480f1
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1ae4f
f0480f1
 
 
6f1ae4f
f0480f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b1501
f0480f1
 
 
b21c5df
f0480f1
74b1501
 
 
f0480f1
 
 
 
 
 
 
 
9a3840d
f0480f1
 
 
74b1501
 
 
 
 
 
 
 
 
 
 
 
 
f0480f1
74b1501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os

import datasets
from typing import List
import json

logger = datasets.logging.get_logger(__name__)


_CITATION = """
XX
"""

_DESCRIPTION = """
This is the repository for HiNER - a large Hindi Named Entity Recognition dataset.
"""

class HiNERCollapsedConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(HiNERCollapsedConfig, self).__init__(**kwargs)


class HiNERCollapsedConfig(datasets.GeneratorBasedBuilder):
    """HiNER Collapsed dataset."""

    BUILDER_CONFIGS = [
        HiNERCollapsedConfig(name="HiNER-Collapsed", version=datasets.Version("0.0.2"), description="Hindi Named Entity Recognition Dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PERSON",
                                "I-PERSON",
                                "B-LOCATION",
                                "I-LOCATION",
                                "B-ORGANIZATION",
                                "I-ORGANIZATION"  
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="YY",
            citation=_CITATION,
        )

    _URL = "https://huggingface.co/datasets/cfilt/HiNER-collapsed/raw/main/data/"
    _URLS = {
        "train": _URL + "train_clean.conll",
        "validation": _URL + "validation_clean.conll",
        "test": _URL + "test_clean.conll"
    }

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = self._URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
        ]

    # def _generate_examples(self, filepath):
    #     """This function returns the examples in the raw (text) form."""
    #     logger.info("generating examples from = %s", filepath)
    #     with open(filepath) as f:
    #         data = json.load(f)
    #         for object in data:
    #             id_ = int(object['id'])
    #             yield id_, {
    #                 "id": str(id_),
    #                 "tokens": object['tokens'],
    #                 #"pos_tags": object['pos_tags'],
    #                 "ner_tags": object['ner_tags'],
    #             }
    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            # pos_tags = []
            # chunk_tags = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            # "pos_tags": pos_tags,
                            # "chunk_tags": chunk_tags,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        # pos_tags = []
                        # chunk_tags = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split("\t")
                    tokens.append(splits[0].strip())
                    # pos_tags.append(splits[1])
                    # chunk_tags.append(splits[2])
                    ner_tags.append(splits[1].strip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                # "pos_tags": pos_tags,
                # "chunk_tags": chunk_tags,
                "ner_tags": ner_tags,
            }