Datasets:

Languages:
Hindi
ArXiv:
License:
File size: 3,156 Bytes
f0480f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1ae4f
f0480f1
 
 
6f1ae4f
f0480f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b21c5df
f0480f1
 
 
 
 
 
 
 
 
 
 
 
9a3840d
f0480f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os

import datasets
from typing import List
import json

logger = datasets.logging.get_logger(__name__)


_CITATION = """
"""

_DESCRIPTION = """
This is the repository for HiNER - a large Hindi Named Entity Recognition dataset.
"""

class HiNERCollapsedConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(HiNERCollapsedConfig, self).__init__(**kwargs)


class HiNERCollapsedConfig(datasets.GeneratorBasedBuilder):
    """HiNER Collapsed dataset."""

    BUILDER_CONFIGS = [
        HiNERCollapsedConfig(name="HiNER-Collapsed", version=datasets.Version("0.0.2"), description="Hindi Named Entity Recognition Dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PERSON",
                                "I-PERSON",
                                "B-LOCATION",
                                "I-LOCATION",
                                "B-ORGANIZATION",
                                "I-ORGANIZATION"  
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    _URL = "https://huggingface.co/datasets/cfilt/HiNER-collapsed/raw/main/data/"
    _URLS = {
        "train": _URL + "train.json",
        "validation": _URL + "validation.json",
        "test": _URL + "test.json"
    }

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = self._URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath) as f:
            data = json.load(f)
            for object in data:
                id_ = int(object['id'])
                yield id_, {
                    "id": str(id_),
                    "tokens": object['tokens'],
                    #"pos_tags": object['pos_tags'],
                    "ner_tags": object['ner_tags'],
                }