import os import json import collections import datasets from datasets import NamedSplit from datasets.download.download_manager import DownloadManager _DESCRIPTION = """\ This dataset contains all THIENVIET products images and annotations split in training and validation. """ _URL = "https://huggingface.co/datasets/chanelcolgate/yenthienviet/resolve/main/data/yenthienviet_coco_hf.zip" _CATEGORIES = [ "hop_dln", "hop_jn", "hop_vtg", "hop_ytv", "lo_kids", "lo_ytv", "loc_dln", "loc_jn", "loc_kids", "loc_ytv", ] class Yenthienviet(datasets.GeneratorBasedBuilder): """Yenthienviet dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "image_id": datasets.Value("int64"), "image": datasets.Image(), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "objects": datasets.Sequence( { "id": datasets.Value("int64"), "area": datasets.Value("int64"), "bbox": datasets.Sequence( datasets.Value("float32"), length=4 ), "category": datasets.ClassLabel(names=_CATEGORIES), } ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, ) def _split_generators(self, dl_manager: DownloadManager): archive = dl_manager.download(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotation_file_path": "annotations/train.json", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "annotation_file_path": "annotations/test.json", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=NamedSplit("val"), gen_kwargs={ "annotation_file_path": "annotations/val.json", "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, annotation_file_path, files): def process_annot(annot, category_id_to_category): return { "id": annot["id"], "area": annot["area"], "bbox": annot["bbox"], "category": category_id_to_category[annot["category_id"]], } image_id_to_image = [] idx = 0 # This loop relies on the ordering of the files in the archive: # Annotation files come first, then the images. for path, f in files: file_name = os.path.basename(path) if path == annotation_file_path: annotations = json.load(f) category_id_to_category = { category["id"]: category["name"] for category in annotations["categories"] } image_id_to_annotations = collections.defaultdict(list) for annot in annotations["annotations"]: image_id_to_annotations[annot["image_id"]].append(annot) image_id_to_image = { annot["file_name"]: annot for annot in annotations["images"] } elif file_name in image_id_to_image: image = image_id_to_image[file_name] objects = [ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]] ] yield idx, { "image_id": image["id"], "image": {"path": path, "bytes": f.read()}, "width": image["width"], "height": image["height"], "objects": objects, } idx += 1