Datasets:
cjvt
/

Languages:
Slovenian
Size:
n<1K
License:
Matej Klemen commited on
Commit
fb63763
1 Parent(s): b90cce2

Add first version of SentiCoref loading script

Browse files
Files changed (3) hide show
  1. README.md +45 -3
  2. dataset_infos.json +1 -0
  3. senticoref.py +271 -0
README.md CHANGED
@@ -1,3 +1,45 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: id_doc
5
+ dtype: string
6
+ - name: words
7
+ sequence:
8
+ sequence:
9
+ sequence: string
10
+ - name: lemmas
11
+ sequence:
12
+ sequence:
13
+ sequence: string
14
+ - name: msds
15
+ sequence:
16
+ sequence:
17
+ sequence: string
18
+ - name: ne_tags
19
+ sequence:
20
+ sequence:
21
+ sequence: string
22
+ - name: mentions
23
+ list:
24
+ - name: id_mention
25
+ dtype: string
26
+ - name: mention_data
27
+ struct:
28
+ - name: idx_par
29
+ dtype: uint32
30
+ - name: idx_sent
31
+ dtype: uint32
32
+ - name: word_indices
33
+ sequence: uint32
34
+ - name: global_word_indices
35
+ sequence: uint32
36
+ - name: coref_clusters
37
+ sequence:
38
+ sequence: string
39
+ splits:
40
+ - name: train
41
+ num_bytes: 21547216
42
+ num_examples: 756
43
+ download_size: 21892324
44
+ dataset_size: 21547216
45
+ ---
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "Slovene corpus for coreference resolution. Contains automatically(?) annotated named entities, manually annotated \ncoreferences, and manually verified lemmas and morphosyntactic tags.\n", "citation": "@misc{suk,\n title = {Training corpus {SUK} 1.0},\n author = {Arhar Holdt, {\u000b S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\u000b z} and Gantar, Polona and {\u000b C}ibej, Jaka and Pori, Eva and Ter{\u000b c}on, Luka and Munda, Tina and {\u000b Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\u000b z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\u000b c}i{\u000b c}, Teja and {\u000b S}krjanec, Iza and Marko, Dafne and Jezer{\u000b s}ek, Lucija and Zajc, Anja},\n url = {http://hdl.handle.net/11356/1747},\n note = {Slovenian language resource repository {CLARIN}.{SI}},\n year = {2022}\n}\n", "homepage": "http://hdl.handle.net/11356/1747", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"id_doc": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "lemmas": {"feature": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "msds": {"feature": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "ne_tags": {"feature": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "mentions": [{"id_mention": {"dtype": "string", "id": null, "_type": "Value"}, "mention_data": {"idx_par": {"dtype": "uint32", "id": null, "_type": "Value"}, "idx_sent": {"dtype": "uint32", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "global_word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}}], "coref_clusters": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "senticoref", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 21632604, "num_examples": 756, "dataset_name": "senticoref"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1747/SUK.TEI.zip": {"num_bytes": 20906601, "checksum": "ae81fd3712e277f9ec6b2b3b076eb80b50c01704d6e644ca932b2013108a8f99"}}, "download_size": 20906601, "post_processing_size": null, "dataset_size": 21632604, "size_in_bytes": 42539205}}
senticoref.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Slovene corpus for coreference resolution. """
2
+ import os
3
+ from collections import OrderedDict
4
+ from copy import deepcopy
5
+ from typing import Dict
6
+
7
+ import datasets
8
+ import xml.etree.ElementTree as ET
9
+ import re
10
+
11
+
12
+ _CITATION = """\
13
+ @misc{suk,
14
+ title = {Training corpus {SUK} 1.1},
15
+ author = {Arhar Holdt, {\v S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Gantar, Polona and {\v C}ibej, Jaka and Pori, Eva and Ter{\v c}on, Luka and Munda, Tina and {\v Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja},
16
+ url = {http://hdl.handle.net/11356/1959},
17
+ note = {Slovenian language resource repository {CLARIN}.{SI}},
18
+ year = {2024}
19
+ }
20
+ """
21
+
22
+ _DESCRIPTION = """\
23
+ Slovene corpus for coreference resolution. Contains automatically(?) annotated named entities, manually annotated
24
+ coreferences, and manually verified lemmas and morphosyntactic tags.
25
+ """
26
+
27
+ _HOMEPAGE = "http://hdl.handle.net/11356/1959"
28
+
29
+ _LICENSE = "Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)"
30
+
31
+ _URLS = {
32
+ "suk.tei": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1959/SUK.TEI.zip",
33
+ }
34
+
35
+
36
+ XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"
37
+
38
+
39
+ def namespace(element):
40
+ # https://stackoverflow.com/a/12946675
41
+ m = re.match(r'\{.*\}', element.tag)
42
+ return m.group(0) if m else ''
43
+
44
+
45
+ def recursively_parse_el(el_tag, opened_ne: str = "O", opened_mentions: list = None) -> Dict:
46
+ """
47
+ :param el_tag: XML ETree tag
48
+ :param opened_ne: Named entity tag encountered at the previous level(s) of the recursive parse
49
+ :param opened_mentions: IDs of mentions encountered at the previous level(s) of the recursive parse.
50
+ The word in the current tag is part of these mentions.
51
+ """
52
+ eff_opened_mentions = opened_mentions if opened_mentions is not None else []
53
+ id_words, words, lemmas, msds, ne_tags = [], [], [], [], []
54
+ mention_to_id_word = {}
55
+
56
+ if el_tag.tag.endswith(("w", "pc")):
57
+ id_word = el_tag.attrib[f"{XML_NAMESPACE}id"]
58
+ word_str = el_tag.text.strip()
59
+ lemma_str = el_tag.attrib["lemma"]
60
+ msd_str = el_tag.attrib["ana"]
61
+
62
+ id_words.append(id_word)
63
+ words.append(word_str)
64
+ lemmas.append(lemma_str)
65
+ msds.append(msd_str)
66
+ ne_tags.append(opened_ne)
67
+
68
+ for _id in eff_opened_mentions:
69
+ _existing = mention_to_id_word.get(_id, [])
70
+ _existing.append(id_word)
71
+
72
+ mention_to_id_word[_id] = _existing
73
+
74
+ # Named entity or some other type of coreference mention
75
+ elif el_tag.tag.endswith("seg"):
76
+ new_ne = opened_ne
77
+ if el_tag.attrib["type"] == "name":
78
+ assert opened_ne == "O", f"Potentially encountered a nested NE ({opened_ne}, {el_tag['subtype'].upper()})"
79
+ new_ne = el_tag.attrib["subtype"].upper()
80
+
81
+ # Discard information about derived named entities
82
+ if new_ne.startswith("DERIV-"):
83
+ new_ne = new_ne[len("DERIV-"):]
84
+
85
+ # The mentions can be nested multiple levels, keep track of all mentions at current or shallower level
86
+ id_mention = el_tag.attrib[f"{XML_NAMESPACE}id"]
87
+ _opened_copy = deepcopy(eff_opened_mentions)
88
+ _opened_copy.append(id_mention)
89
+
90
+ for _i, _child in enumerate(el_tag):
91
+ _res = recursively_parse_el(_child, opened_ne=new_ne, opened_mentions=_opened_copy)
92
+
93
+ id_words.extend(_res["id_words"])
94
+ words.extend(_res["words"])
95
+ lemmas.extend(_res["lemmas"])
96
+ msds.extend(_res["msds"])
97
+ ne_tags.extend(_res["ne_tags"])
98
+
99
+ for _id_mention, _id_words in _res["mentions"].items():
100
+ _existing = mention_to_id_word.get(_id_mention, [])
101
+ _existing.extend(_id_words)
102
+ mention_to_id_word[_id_mention] = _existing
103
+
104
+ if new_ne != "O": # IOB2
105
+ ne_tags = [f"B-{_tag}" if _i == 0 else f"I-{_tag}" for _i, _tag in enumerate(ne_tags)]
106
+
107
+ else:
108
+ print(f"WARNING: unrecognized tag in `recursively_parse_el`: {el_tag}. "
109
+ f"Please open an issue on the HuggingFace datasets repository.")
110
+
111
+ return {
112
+ "id_words": id_words, "words": words, "lemmas": lemmas, "msds": msds, "ne_tags": ne_tags,
113
+ "mentions": mention_to_id_word
114
+ }
115
+
116
+
117
+ def parse_sent(sent_tag):
118
+ sent_info = {
119
+ "id_words": [], "words": [], "lemmas": [], "msds": [], "ne_tags": [],
120
+ "mentions": {}
121
+ }
122
+
123
+ for el in sent_tag:
124
+ if el.tag.endswith("linkGrp"):
125
+ # Parse coreference clusters later, outside of this function
126
+ continue
127
+
128
+ res = recursively_parse_el(el)
129
+ sent_info["id_words"].extend(res["id_words"])
130
+ sent_info["words"].extend(res["words"])
131
+ sent_info["lemmas"].extend(res["lemmas"])
132
+ sent_info["msds"].extend(res["msds"])
133
+ sent_info["ne_tags"].extend(res["ne_tags"])
134
+ sent_info["mentions"].update(res["mentions"])
135
+
136
+ return sent_info
137
+
138
+
139
+ class SentiCoref(datasets.GeneratorBasedBuilder):
140
+ """Slovene corpus for coreference resolution."""
141
+
142
+ VERSION = datasets.Version("1.0.0")
143
+
144
+ def _info(self):
145
+ features = datasets.Features(
146
+ {
147
+ "id_doc": datasets.Value("string"),
148
+ "words": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
149
+ "lemmas": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
150
+ "msds": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
151
+ "ne_tags": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
152
+ "mentions": [{
153
+ "id_mention": datasets.Value("string"),
154
+ "mention_data": {
155
+ "idx_par": datasets.Value("uint32"),
156
+ "idx_sent": datasets.Value("uint32"),
157
+ "word_indices": datasets.Sequence(datasets.Value("uint32")),
158
+ "global_word_indices": datasets.Sequence(datasets.Value("uint32"))
159
+ }
160
+ }],
161
+ "coref_clusters": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
162
+ }
163
+ )
164
+
165
+ return datasets.DatasetInfo(
166
+ description=_DESCRIPTION,
167
+ features=features,
168
+ homepage=_HOMEPAGE,
169
+ license=_LICENSE,
170
+ citation=_CITATION,
171
+ )
172
+
173
+ def _split_generators(self, dl_manager):
174
+ urls = _URLS["suk.tei"]
175
+ data_dir = dl_manager.download_and_extract(urls)
176
+ return [
177
+ datasets.SplitGenerator(
178
+ name=datasets.Split.TRAIN,
179
+ gen_kwargs={"file_path": os.path.join(data_dir, "SUK.TEI", "senticoref.xml")}
180
+ )
181
+ ]
182
+
183
+ def _generate_examples(self, file_path):
184
+ curr_doc = ET.parse(file_path)
185
+ root = curr_doc.getroot()
186
+ NAMESPACE = namespace(root)
187
+
188
+ for idx_doc, doc in enumerate(root.iterfind(f"{NAMESPACE}div")):
189
+ id2tokinfo = {}
190
+
191
+ doc_words, doc_lemmas, doc_msds, doc_ne_tags = [], [], [], []
192
+ doc_mentions = {}
193
+ doc_position = 0
194
+
195
+ # Step 1: Extract everything but the coreference clusters
196
+ # Clusters are marked at sentence level so they are often duplicated - find unique clusters afterwards
197
+ for idx_par, par in enumerate(doc.findall(f"{NAMESPACE}p")):
198
+ par_words, par_lemmas, par_msds, par_ne_tags = [], [], [], []
199
+
200
+ for idx_sent, sent in enumerate(par.findall(f"{NAMESPACE}s")):
201
+ sent_data = parse_sent(sent)
202
+
203
+ par_words.append(sent_data["words"])
204
+ par_lemmas.append(sent_data["lemmas"])
205
+ par_msds.append(sent_data["msds"])
206
+ par_ne_tags.append(sent_data["ne_tags"])
207
+
208
+ for pos_in_sent, (id_token, word_str, lemma_str, msd_str) in enumerate(zip(sent_data["id_words"],
209
+ sent_data["words"],
210
+ sent_data["lemmas"],
211
+ sent_data["msds"])):
212
+ id2tokinfo[id_token] = {
213
+ "idx_par": idx_par, "idx_sent": idx_sent, "pos_in_sent": pos_in_sent,
214
+ "doc_position": doc_position
215
+ }
216
+ doc_position += 1
217
+
218
+ for id_mention, word_ids in sent_data["mentions"].items():
219
+ mention_fmt = {
220
+ "idx_par": idx_par, "idx_sent": idx_sent, "word_indices": [],
221
+ "global_word_indices": []
222
+ }
223
+
224
+ for _id in word_ids:
225
+ _info = id2tokinfo[_id]
226
+ mention_fmt["word_indices"].append(_info["pos_in_sent"])
227
+ mention_fmt["global_word_indices"].append(_info["doc_position"])
228
+
229
+ doc_mentions[id_mention] = mention_fmt
230
+
231
+ doc_words.append(par_words)
232
+ doc_lemmas.append(par_lemmas)
233
+ doc_msds.append(par_msds)
234
+ doc_ne_tags.append(par_ne_tags)
235
+
236
+ # Step 2: extract coreference clusters
237
+ unique_clusters = OrderedDict() # Preserving order just in case
238
+ for link_group in doc.findall(f".//{NAMESPACE}linkGrp[@type = 'COREF']"):
239
+ for link in link_group.findall(f"{NAMESPACE}link"):
240
+ # Remove the reference marker ("#") in front of ID
241
+ cluster = tuple(map(lambda _s: _s[1:], link.attrib["target"].split(" ")))
242
+ unique_clusters[cluster] = None
243
+
244
+ doc_clusters = []
245
+ for cluster in unique_clusters:
246
+ doc_clusters.append(list(cluster))
247
+ for id_mention in cluster:
248
+ if id_mention not in doc_mentions:
249
+ # Mention may be a regular token, i.e. a word referring to an entity
250
+ # (`id_mention` is then the ID of a token)
251
+ _info = id2tokinfo[id_mention]
252
+ doc_mentions[id_mention] = {
253
+ "idx_par": _info["idx_par"], "idx_sent": _info["idx_sent"],
254
+ "word_indices": [_info["pos_in_sent"]],
255
+ "global_word_indices": [_info["doc_position"]]
256
+ }
257
+
258
+ # Convert to list of dictionaries as datasets expects fixed key names
259
+ doc_mentions_list = []
260
+ for id_mention, mention_data in doc_mentions.items():
261
+ doc_mentions_list.append({
262
+ "id_mention": id_mention,
263
+ "mention_data": mention_data
264
+ })
265
+
266
+ yield idx_doc, {
267
+ "id_doc": doc.attrib[f"{XML_NAMESPACE}id"],
268
+ "words": doc_words, "lemmas": doc_lemmas, "msds": doc_msds, "ne_tags": doc_ne_tags,
269
+ "mentions": doc_mentions_list,
270
+ "coref_clusters": doc_clusters
271
+ }