""" Slovene corpus for coreference resolution. """ import os from collections import OrderedDict from copy import deepcopy from typing import Dict import datasets import xml.etree.ElementTree as ET import re _CITATION = """\ @misc{suk, title = {Training corpus {SUK} 1.1}, author = {Arhar Holdt, {\v S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Gantar, Polona and {\v C}ibej, Jaka and Pori, Eva and Ter{\v c}on, Luka and Munda, Tina and {\v Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja}, url = {http://hdl.handle.net/11356/1959}, note = {Slovenian language resource repository {CLARIN}.{SI}}, year = {2024} } """ _DESCRIPTION = """\ Slovene corpus for coreference resolution. Contains automatically(?) annotated named entities, manually annotated coreferences, and manually verified lemmas and morphosyntactic tags. """ _HOMEPAGE = "http://hdl.handle.net/11356/1959" _LICENSE = "Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)" _URLS = { "suk.tei": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1959/SUK.TEI.zip", } XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}" def namespace(element): # https://stackoverflow.com/a/12946675 m = re.match(r'\{.*\}', element.tag) return m.group(0) if m else '' def recursively_parse_el(el_tag, opened_ne: str = "O", opened_mentions: list = None) -> Dict: """ :param el_tag: XML ETree tag :param opened_ne: Named entity tag encountered at the previous level(s) of the recursive parse :param opened_mentions: IDs of mentions encountered at the previous level(s) of the recursive parse. The word in the current tag is part of these mentions. """ eff_opened_mentions = opened_mentions if opened_mentions is not None else [] id_words, words, lemmas, msds, ne_tags = [], [], [], [], [] mention_to_id_word = {} if el_tag.tag.endswith(("w", "pc")): id_word = el_tag.attrib[f"{XML_NAMESPACE}id"] word_str = el_tag.text.strip() lemma_str = el_tag.attrib["lemma"] msd_str = el_tag.attrib["ana"] id_words.append(id_word) words.append(word_str) lemmas.append(lemma_str) msds.append(msd_str) ne_tags.append(opened_ne) for _id in eff_opened_mentions: _existing = mention_to_id_word.get(_id, []) _existing.append(id_word) mention_to_id_word[_id] = _existing # Named entity or some other type of coreference mention elif el_tag.tag.endswith("seg"): new_ne = opened_ne if el_tag.attrib["type"] == "name": assert opened_ne == "O", f"Potentially encountered a nested NE ({opened_ne}, {el_tag['subtype'].upper()})" new_ne = el_tag.attrib["subtype"].upper() # Discard information about derived named entities if new_ne.startswith("DERIV-"): new_ne = new_ne[len("DERIV-"):] # The mentions can be nested multiple levels, keep track of all mentions at current or shallower level id_mention = el_tag.attrib[f"{XML_NAMESPACE}id"] _opened_copy = deepcopy(eff_opened_mentions) _opened_copy.append(id_mention) for _i, _child in enumerate(el_tag): _res = recursively_parse_el(_child, opened_ne=new_ne, opened_mentions=_opened_copy) id_words.extend(_res["id_words"]) words.extend(_res["words"]) lemmas.extend(_res["lemmas"]) msds.extend(_res["msds"]) ne_tags.extend(_res["ne_tags"]) for _id_mention, _id_words in _res["mentions"].items(): _existing = mention_to_id_word.get(_id_mention, []) _existing.extend(_id_words) mention_to_id_word[_id_mention] = _existing if new_ne != "O": # IOB2 ne_tags = [f"B-{_tag}" if _i == 0 else f"I-{_tag}" for _i, _tag in enumerate(ne_tags)] else: print(f"WARNING: unrecognized tag in `recursively_parse_el`: {el_tag}. " f"Please open an issue on the HuggingFace datasets repository.") return { "id_words": id_words, "words": words, "lemmas": lemmas, "msds": msds, "ne_tags": ne_tags, "mentions": mention_to_id_word } def parse_sent(sent_tag): sent_info = { "id_words": [], "words": [], "lemmas": [], "msds": [], "ne_tags": [], "mentions": {} } for el in sent_tag: if el.tag.endswith("linkGrp"): # Parse coreference clusters later, outside of this function continue res = recursively_parse_el(el) sent_info["id_words"].extend(res["id_words"]) sent_info["words"].extend(res["words"]) sent_info["lemmas"].extend(res["lemmas"]) sent_info["msds"].extend(res["msds"]) sent_info["ne_tags"].extend(res["ne_tags"]) sent_info["mentions"].update(res["mentions"]) return sent_info class SentiCoref(datasets.GeneratorBasedBuilder): """Slovene corpus for coreference resolution.""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "id_doc": datasets.Value("string"), "words": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))), "lemmas": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))), "msds": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))), "ne_tags": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))), "mentions": [{ "id_mention": datasets.Value("string"), "mention_data": { "idx_par": datasets.Value("uint32"), "idx_sent": datasets.Value("uint32"), "word_indices": datasets.Sequence(datasets.Value("uint32")), "global_word_indices": datasets.Sequence(datasets.Value("uint32")) } }], "coref_clusters": datasets.Sequence(datasets.Sequence(datasets.Value("string"))) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS["suk.tei"] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_path": os.path.join(data_dir, "SUK.TEI", "senticoref.xml")} ) ] def _generate_examples(self, file_path): curr_doc = ET.parse(file_path) root = curr_doc.getroot() NAMESPACE = namespace(root) for idx_doc, doc in enumerate(root.iterfind(f"{NAMESPACE}div")): id2tokinfo = {} doc_words, doc_lemmas, doc_msds, doc_ne_tags = [], [], [], [] doc_mentions = {} doc_position = 0 # Step 1: Extract everything but the coreference clusters # Clusters are marked at sentence level so they are often duplicated - find unique clusters afterwards for idx_par, par in enumerate(doc.findall(f"{NAMESPACE}p")): par_words, par_lemmas, par_msds, par_ne_tags = [], [], [], [] for idx_sent, sent in enumerate(par.findall(f"{NAMESPACE}s")): sent_data = parse_sent(sent) par_words.append(sent_data["words"]) par_lemmas.append(sent_data["lemmas"]) par_msds.append(sent_data["msds"]) par_ne_tags.append(sent_data["ne_tags"]) for pos_in_sent, (id_token, word_str, lemma_str, msd_str) in enumerate(zip(sent_data["id_words"], sent_data["words"], sent_data["lemmas"], sent_data["msds"])): id2tokinfo[id_token] = { "idx_par": idx_par, "idx_sent": idx_sent, "pos_in_sent": pos_in_sent, "doc_position": doc_position } doc_position += 1 for id_mention, word_ids in sent_data["mentions"].items(): mention_fmt = { "idx_par": idx_par, "idx_sent": idx_sent, "word_indices": [], "global_word_indices": [] } for _id in word_ids: _info = id2tokinfo[_id] mention_fmt["word_indices"].append(_info["pos_in_sent"]) mention_fmt["global_word_indices"].append(_info["doc_position"]) doc_mentions[id_mention] = mention_fmt doc_words.append(par_words) doc_lemmas.append(par_lemmas) doc_msds.append(par_msds) doc_ne_tags.append(par_ne_tags) # Step 2: extract coreference clusters unique_clusters = OrderedDict() # Preserving order just in case for link_group in doc.findall(f".//{NAMESPACE}linkGrp[@type = 'COREF']"): for link in link_group.findall(f"{NAMESPACE}link"): # Remove the reference marker ("#") in front of ID cluster = tuple(map(lambda _s: _s[1:], link.attrib["target"].split(" "))) unique_clusters[cluster] = None doc_clusters = [] for cluster in unique_clusters: doc_clusters.append(list(cluster)) for id_mention in cluster: if id_mention not in doc_mentions: # Mention may be a regular token, i.e. a word referring to an entity # (`id_mention` is then the ID of a token) _info = id2tokinfo[id_mention] doc_mentions[id_mention] = { "idx_par": _info["idx_par"], "idx_sent": _info["idx_sent"], "word_indices": [_info["pos_in_sent"]], "global_word_indices": [_info["doc_position"]] } # Convert to list of dictionaries as datasets expects fixed key names doc_mentions_list = [] for id_mention, mention_data in doc_mentions.items(): doc_mentions_list.append({ "id_mention": id_mention, "mention_data": mention_data }) yield idx_doc, { "id_doc": doc.attrib[f"{XML_NAMESPACE}id"], "words": doc_words, "lemmas": doc_lemmas, "msds": doc_msds, "ne_tags": doc_ne_tags, "mentions": doc_mentions_list, "coref_clusters": doc_clusters }