Datasets:
cjvt
/

Modalities:
Tabular
Text
Languages:
Slovenian
Libraries:
Datasets
License:
parquet-converter commited on
Commit
ea9dc6f
1 Parent(s): a5b444f

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,51 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.lz4 filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.npy filter=lfs diff=lfs merge=lfs -text
14
- *.npz filter=lfs diff=lfs merge=lfs -text
15
- *.onnx filter=lfs diff=lfs merge=lfs -text
16
- *.ot filter=lfs diff=lfs merge=lfs -text
17
- *.parquet filter=lfs diff=lfs merge=lfs -text
18
- *.pb filter=lfs diff=lfs merge=lfs -text
19
- *.pickle filter=lfs diff=lfs merge=lfs -text
20
- *.pkl filter=lfs diff=lfs merge=lfs -text
21
- *.pt filter=lfs diff=lfs merge=lfs -text
22
- *.pth filter=lfs diff=lfs merge=lfs -text
23
- *.rar filter=lfs diff=lfs merge=lfs -text
24
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
- *.tar.* filter=lfs diff=lfs merge=lfs -text
26
- *.tflite filter=lfs diff=lfs merge=lfs -text
27
- *.tgz filter=lfs diff=lfs merge=lfs -text
28
- *.wasm filter=lfs diff=lfs merge=lfs -text
29
- *.xz filter=lfs diff=lfs merge=lfs -text
30
- *.zip filter=lfs diff=lfs merge=lfs -text
31
- *.zst filter=lfs diff=lfs merge=lfs -text
32
- *tfevents* filter=lfs diff=lfs merge=lfs -text
33
- # Audio files - uncompressed
34
- *.pcm filter=lfs diff=lfs merge=lfs -text
35
- *.sam filter=lfs diff=lfs merge=lfs -text
36
- *.raw filter=lfs diff=lfs merge=lfs -text
37
- # Audio files - compressed
38
- *.aac filter=lfs diff=lfs merge=lfs -text
39
- *.flac filter=lfs diff=lfs merge=lfs -text
40
- *.mp3 filter=lfs diff=lfs merge=lfs -text
41
- *.ogg filter=lfs diff=lfs merge=lfs -text
42
- *.wav filter=lfs diff=lfs merge=lfs -text
43
- # Image files - uncompressed
44
- *.bmp filter=lfs diff=lfs merge=lfs -text
45
- *.gif filter=lfs diff=lfs merge=lfs -text
46
- *.png filter=lfs diff=lfs merge=lfs -text
47
- *.tiff filter=lfs diff=lfs merge=lfs -text
48
- # Image files - compressed
49
- *.jpg filter=lfs diff=lfs merge=lfs -text
50
- *.jpeg filter=lfs diff=lfs merge=lfs -text
51
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,100 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - crowdsourced
4
- language:
5
- - sl
6
- language_creators:
7
- - found
8
- license:
9
- - cc-by-sa-4.0
10
- multilinguality:
11
- - monolingual
12
- pretty_name: SentiNews
13
- size_categories: []
14
- source_datasets:
15
- - original
16
- tags:
17
- - slovenian sentiment
18
- - news articles
19
- task_categories:
20
- - text-classification
21
- task_ids:
22
- - sentiment-classification
23
- ---
24
-
25
- # Dataset Card for SentiNews
26
-
27
- ## Dataset Description
28
-
29
- - **Homepage:** https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene
30
- - **Paper:** Bučar, J., Žnidaršič, M. & Povh, J. Annotated news corpora and a lexicon for sentiment analysis in Slovene. Lang Resources & Evaluation 52, 895–919 (2018). https://doi.org/10.1007/s10579-018-9413-3
31
-
32
- ### Dataset Summary
33
-
34
- SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their sentiment by between two and six annotators.
35
- It is annotated at three granularities:
36
- - document-level (config `document_level`, 10 427 documents),
37
- - paragraph-level (config `paragraph_level`, 89 999 paragraphs), and
38
- - sentence-level (config `sentence_level`, 168 899 sentences).
39
-
40
- ### Supported Tasks and Leaderboards
41
-
42
- Sentiment classification, three classes (negative, neutral, positive).
43
-
44
- ### Languages
45
-
46
- Slovenian.
47
-
48
- ## Dataset Structure
49
-
50
- ### Data Instances
51
-
52
- A sample instance from the sentence-level config:
53
- ```
54
- {
55
- 'nid': 2,
56
- 'content': 'Vilo Prešeren je na dražbi ministrstva za obrambo kupilo nepremičninsko podjetje Condor Real s sedežem v Lescah.',
57
- 'sentiment': 'neutral',
58
- 'pid': 1,
59
- 'sid': 1
60
- }
61
- ```
62
-
63
- ### Data Fields
64
-
65
- The data fields are similar among all three configs, with the only difference being the IDs.
66
-
67
- - `nid`: a uint16 containing a unique ID of the news article (document).
68
- - `content`: a string containing the body of the news article
69
- - `sentiment`: the sentiment of the instance
70
- - `pid`: a uint8 containing the consecutive number of the paragraph inside the current news article, **not unique** (present in the configs `paragraph_level` and `sentence_level`)
71
- - `sid`: a uint8 containing the consecutive number of the sentence inside the current paragraph, **not unique** (present in the config `sentence_level`)
72
-
73
- ## Additional Information
74
-
75
- ### Dataset Curators
76
-
77
- Jože Bučar, Martin Žnidaršič, Janez Povh.
78
-
79
- ### Licensing Information
80
-
81
- CC BY-SA 4.0
82
-
83
- ### Citation Information
84
-
85
- ```
86
- @article{buvcar2018annotated,
87
- title={Annotated news corpora and a lexicon for sentiment analysis in Slovene},
88
- author={Bu{\v{c}}ar, Jo{\v{z}}e and {\v{Z}}nidar{\v{s}}i{\v{c}}, Martin and Povh, Janez},
89
- journal={Language Resources and Evaluation},
90
- volume={52},
91
- number={3},
92
- pages={895--919},
93
- year={2018},
94
- publisher={Springer}
95
- }
96
- ```
97
-
98
- ### Contributions
99
-
100
- Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"document_level": {"description": "SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their \nsentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content \nfrom the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and \u017durnal24. The texts were annotated using the \nfive-level Lickert scale (1 \u2013 very negative, 2 \u2013 negative, 3 \u2013 neutral, 4 \u2013 positive, and 5 \u2013 very positive) on three \nlevels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using \nthe following criterion: negative (if average of scores \u2264 2.4); neutral (if average of scores is between 2.4 and 3.6); \npositive (average of annotated scores \u2265 3.6).\n", "citation": "@article{buvcar2018annotated, \n title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, \n author={Bu{\u000b{c}}ar, Jo{\u000b{z}}e and {\u000b{Z}}nidar{\u000b{s}}i{\u000b{c}}, Martin and Povh, Janez}, \n journal={Language Resources and Evaluation}, \n volume={52}, \n number={3}, \n pages={895--919}, \n year={2018}, \n publisher={Springer}\n}\n", "homepage": "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"nid": {"dtype": "uint16", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "content", "output": "sentiment"}, "task_templates": null, "builder_name": "sentinews", "config_name": "document_level", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 21726849, "num_examples": 10427, "dataset_name": "sentinews"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_document-level.txt": {"num_bytes": 23755522, "checksum": "060fe71d719d79e3bcba335abfc146485fa2f3568b5cc1245bd694834d77190c"}}, "download_size": 23755522, "post_processing_size": null, "dataset_size": 21726849, "size_in_bytes": 45482371}, "paragraph_level": {"description": "SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their \nsentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content \nfrom the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and \u017durnal24. The texts were annotated using the \nfive-level Lickert scale (1 \u2013 very negative, 2 \u2013 negative, 3 \u2013 neutral, 4 \u2013 positive, and 5 \u2013 very positive) on three \nlevels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using \nthe following criterion: negative (if average of scores \u2264 2.4); neutral (if average of scores is between 2.4 and 3.6); \npositive (average of annotated scores \u2265 3.6).\n", "citation": "@article{buvcar2018annotated, \n title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, \n author={Bu{\u000b{c}}ar, Jo{\u000b{z}}e and {\u000b{Z}}nidar{\u000b{s}}i{\u000b{c}}, Martin and Povh, Janez}, \n journal={Language Resources and Evaluation}, \n volume={52}, \n number={3}, \n pages={895--919}, \n year={2018}, \n publisher={Springer}\n}\n", "homepage": "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"nid": {"dtype": "uint16", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"dtype": "string", "id": null, "_type": "Value"}, "pid": {"dtype": "uint8", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "content", "output": "sentiment"}, "task_templates": null, "builder_name": "sentinews", "config_name": "paragraph_level", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23107429, "num_examples": 89999, "dataset_name": "sentinews"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_paragraph-level.txt": {"num_bytes": 24342387, "checksum": "c45535325db5a6ef5073d7a594c68e5a5c60983d2e1b277f0dbf76f9975a9f18"}}, "download_size": 24342387, "post_processing_size": null, "dataset_size": 23107429, "size_in_bytes": 47449816}, "sentence_level": {"description": "SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their \nsentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content \nfrom the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and \u017durnal24. The texts were annotated using the \nfive-level Lickert scale (1 \u2013 very negative, 2 \u2013 negative, 3 \u2013 neutral, 4 \u2013 positive, and 5 \u2013 very positive) on three \nlevels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using \nthe following criterion: negative (if average of scores \u2264 2.4); neutral (if average of scores is between 2.4 and 3.6); \npositive (average of annotated scores \u2265 3.6).\n", "citation": "@article{buvcar2018annotated, \n title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, \n author={Bu{\u000b{c}}ar, Jo{\u000b{z}}e and {\u000b{Z}}nidar{\u000b{s}}i{\u000b{c}}, Martin and Povh, Janez}, \n journal={Language Resources and Evaluation}, \n volume={52}, \n number={3}, \n pages={895--919}, \n year={2018}, \n publisher={Springer}\n}\n", "homepage": "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"nid": {"dtype": "uint16", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"dtype": "string", "id": null, "_type": "Value"}, "pid": {"dtype": "uint8", "id": null, "_type": "Value"}, "sid": {"dtype": "uint8", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "content", "output": "sentiment"}, "task_templates": null, "builder_name": "sentinews", "config_name": "sentence_level", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 24641935, "num_examples": 168899, "dataset_name": "sentinews"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_sentence-level.txt": {"num_bytes": 27220223, "checksum": "4382e064543b7fc6d61cc76bc2f16f8f37c80065dbc4f87b888919d1f45bb9c1"}}, "download_size": 27220223, "post_processing_size": null, "dataset_size": 24641935, "size_in_bytes": 51862158}}
 
 
document_level/sentinews-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79dedea50d8615e809e54e48acbe75077bf2a4435f1fdb97212fe6dbbcd29133
3
+ size 13384656
paragraph_level/sentinews-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db5c7e104f9446a4d93b0ac00b3d039ea49c634738ce2afa3835cddb580e1d7f
3
+ size 13921028
sentence_level/sentinews-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a300d363cdc2482acbcdc63784cbec6658c0e1d9c91e25452a1ff935f36c173
3
+ size 14487061
sentinews.py DELETED
@@ -1,93 +0,0 @@
1
- """SentiNews: Manually sentiment annotated Slovenian news corpus."""
2
-
3
-
4
- import csv
5
-
6
- import datasets
7
-
8
- _CITATION = """\
9
- @article{buvcar2018annotated,
10
- title={Annotated news corpora and a lexicon for sentiment analysis in Slovene},
11
- author={Bu{\v{c}}ar, Jo{\v{z}}e and {\v{Z}}nidar{\v{s}}i{\v{c}}, Martin and Povh, Janez},
12
- journal={Language Resources and Evaluation},
13
- volume={52},
14
- number={3},
15
- pages={895--919},
16
- year={2018},
17
- publisher={Springer}
18
- }
19
- """
20
-
21
- _DESCRIPTION = """\
22
- SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their
23
- sentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content
24
- from the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and Žurnal24. The texts were annotated using the
25
- five-level Lickert scale (1 – very negative, 2 – negative, 3 – neutral, 4 – positive, and 5 – very positive) on three
26
- levels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using
27
- the following criterion: negative (if average of scores ≤ 2.4); neutral (if average of scores is between 2.4 and 3.6);
28
- positive (average of annotated scores ≥ 3.6).
29
- """
30
-
31
- _HOMEPAGE = "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/"
32
-
33
- _LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
34
-
35
- _URLS = {
36
- "document_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_document-level.txt",
37
- "paragraph_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_paragraph-level.txt",
38
- "sentence_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_sentence-level.txt"
39
- }
40
-
41
-
42
- class Sentinews(datasets.GeneratorBasedBuilder):
43
- """SentiNews: Manually sentiment annotated Slovenian news corpus. Version 1.0."""
44
-
45
- VERSION = datasets.Version("1.0.0")
46
-
47
- BUILDER_CONFIGS = [
48
- datasets.BuilderConfig(name="document_level", version=VERSION, description="Dataset annotated at document level."),
49
- datasets.BuilderConfig(name="paragraph_level", version=VERSION, description="Dataset annotated at paragraph level."),
50
- datasets.BuilderConfig(name="sentence_level", version=VERSION, description="Dataset annotated at sentence level."),
51
- ]
52
-
53
- def _info(self):
54
- _config_features = {
55
- "nid": datasets.Value("uint16"),
56
- "content": datasets.Value("string"),
57
- "sentiment": datasets.Value("string")
58
- }
59
-
60
- if self.config.name == "paragraph_level":
61
- _config_features["pid"] = datasets.Value("uint8")
62
- elif self.config.name == "sentence_level":
63
- _config_features["pid"] = datasets.Value("uint8")
64
- _config_features["sid"] = datasets.Value("uint8")
65
-
66
- features = datasets.Features(_config_features)
67
- return datasets.DatasetInfo(
68
- description=_DESCRIPTION,
69
- features=features,
70
- supervised_keys=("content", "sentiment"),
71
- homepage=_HOMEPAGE,
72
- license=_LICENSE,
73
- citation=_CITATION,
74
- )
75
-
76
- def _split_generators(self, dl_manager):
77
- urls = _URLS[self.config.name]
78
- data_file = dl_manager.download_and_extract(urls)
79
- return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": data_file})]
80
-
81
- def _generate_examples(self, data_file):
82
- _keys_to_return = ["nid", "content", "sentiment"]
83
-
84
- if self.config.name == "paragraph_level":
85
- _keys_to_return.append("pid")
86
- elif self.config.name == "sentence_level":
87
- _keys_to_return.append("pid")
88
- _keys_to_return.append("sid")
89
-
90
- with open(data_file, encoding="utf-8") as f:
91
- data = csv.DictReader(f, delimiter="\t")
92
- for idx, row in enumerate(data):
93
- yield idx, {_k: row[_k] for _k in _keys_to_return}