--- dataset_info: features: - name: prompt dtype: string - name: reference_code dtype: string - name: code_context dtype: string - name: problem_id dtype: int64 - name: library_problem_id dtype: int64 - name: library dtype: class_label: names: '0': Matplotlib '1': Numpy '2': Pandas '3': Pytorch '4': Scipy '5': Sklearn '6': Tensorflow - name: test_case_cnt dtype: int64 - name: perturbation_type dtype: class_label: names: '0': Difficult-Rewrite '1': Origin '2': Semantic '3': Surface - name: perturbation_origin_id dtype: int64 splits: - name: test num_bytes: 3136179 num_examples: 1000 download_size: 712717 dataset_size: 3136179 configs: - config_name: default data_files: - split: test path: data/test-* license: cc-by-sa-4.0 language: - code task_categories: - text2text-generation tags: - code-generation pretty_name: DS-1000 --- This is a reupload of [DS-1000](https://huggingface.co/datasets/xlangai/DS-1000). The metadata dictionary has been extracted into columns and the categorical variables are now `ClassLabel` types, and the dataset is natively a parquet. The features are as follows: | Column | Type | |----------------------|-----------------------------------------------------------------------------------------------------------| |problem_id |`Value(dtype='int64', id=None)` | |prompt |`Value(dtype='string', id=None)` | |reference_code |`Value(dtype='string', id=None)` | |code_context |`Value(dtype='string', id=None)` | |library_problem_id |`Value(dtype='int64', id=None)` | |library |`ClassLabel(names=['Matplotlib', 'Numpy', 'Pandas', 'Pytorch', 'Scipy', 'Sklearn', 'Tensorflow'], id=None)`| |test_case_cnt |`Value(dtype='int64', id=None)` | |perturbation_type |`ClassLabel(names=['Difficult-Rewrite', 'Origin', 'Semantic', 'Surface'], id=None)` | |perturbation_origin_id|`Value(dtype='int64', id=None)` | All credits go to the original authors below. ---