File size: 3,457 Bytes
00d5450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
from functools import partial
import sys
sys.path.append("lib")
from lib.metrics import sce_loss
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.nn as dglnn
class GMae(nn.Module):
def __init__(self, encoder, decoder,
in_dim, hidden_dim, out_dim, mask_rate=0.3, replace_rate=0.1, alpha_l=2,
embedding_layer_classes=5, embedding_layer_dim=4):
super(GMae, self).__init__()
self.Z_embedding = nn.Embedding(embedding_layer_classes, embedding_layer_dim)
self.encoder = encoder
self.decoder = decoder
self.mask_rate = mask_rate
self.replace_rate = replace_rate
self.alpha_l = alpha_l
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.embedding_layer_classes = embedding_layer_classes
self.embedding_layer_dim = embedding_layer_dim
self.enc_mask_token = nn.Parameter(torch.zeros(1, in_dim))
self.criterion = partial(sce_loss, alpha=alpha_l)
self.encoder_to_decoder = nn.Linear(hidden_dim, hidden_dim, bias=False)
def encode_atom_index(self, Z_index):
return self.Z_embedding(Z_index)
def encoding_mask_noise(self, g, x, mask_rate=0.3):
num_nodes = g.num_nodes()
perm = torch.randperm(num_nodes, device=x.device)
# random masking
num_mask_nodes = int(mask_rate * num_nodes)
mask_nodes = perm[: num_mask_nodes]
keep_nodes = perm[num_mask_nodes:]
if self.replace_rate > 0:
num_noise_nodes = int(self.replace_rate * num_mask_nodes)
perm_mask = torch.randperm(num_mask_nodes, device=x.device)
token_nodes = mask_nodes[perm_mask[: int((1 - self.replace_rate) * num_mask_nodes)]]
noise_nodes = mask_nodes[perm_mask[-int(self.replace_rate * num_mask_nodes):]]
noise_to_be_chosen = torch.randperm(num_nodes, device=x.device)[:num_noise_nodes]
out_x = x.clone()
out_x[token_nodes] = 0.0
out_x[noise_nodes] = x[noise_to_be_chosen]
else:
out_x = x.clone()
token_nodes = mask_nodes
out_x[mask_nodes] = 0.0
out_x[token_nodes] += self.enc_mask_token
use_g = g.clone()
return use_g, out_x, (mask_nodes, keep_nodes)
def mask_attr_prediction(self, g, x):
use_g, use_x, (mask_nodes, keep_nodes) = self.encoding_mask_noise(g, x, self.mask_rate)
enc_rep = self.encoder(use_g, use_x)
# ---- attribute reconstruction ----
rep = self.encoder_to_decoder(enc_rep)
recon = self.decoder(use_g, rep)
x_init = x[mask_nodes]
x_rec = recon[mask_nodes]
loss = self.criterion(x_rec, x_init)
return loss
def embed(self, g, x):
rep = self.encoder(g, x)
return rep
class SimpleGnn(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats):
super().__init__()
self.conv1 = dglnn.SAGEConv(
in_feats=in_feats, out_feats=hid_feats, aggregator_type="mean")
self.conv2 = dglnn.SAGEConv(
in_feats=hid_feats, out_feats=out_feats, aggregator_type="mean")
def forward(self, graph, inputs):
h = self.conv1(graph, inputs)
h = F.relu(h)
h = self.conv2(graph, h)
return h
|