File size: 14,161 Bytes
43c53fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import os
import numpy as np
import torch
import torch.utils.data
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
import sys
project_path = "/content/gdrive//My Drive/CS5248_project"
sys.path.append(project_path + '/lib')
from metrics import masked_mape_np
from scipy.sparse.linalg import eigs
from metrics import masked_mape_np, masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test
def re_normalization(x, mean, std):
x = x * std + mean
return x
def max_min_normalization(x, _max, _min):
x = 1. * (x - _min)/(_max - _min)
x = x * 2. - 1.
return x
def re_max_min_normalization(x, _max, _min):
x = (x + 1.) / 2.
x = 1. * x * (_max - _min) + _min
return x
def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
'''
Parameters
----------
distance_df_filename: str, path of the csv file contains edges information
num_of_vertices: int, the number of vertices
Returns
----------
A: np.ndarray, adjacency matrix
'''
if 'npy' in distance_df_filename:
adj_mx = np.load(distance_df_filename)
return adj_mx, None
else:
import csv
A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
dtype=np.float32)
distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
dtype=np.float32)
if id_filename:
with open(id_filename, 'r') as f:
id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))} # 把节点id(idx)映射成从0开始的索引
with open(distance_df_filename, 'r') as f:
f.readline()
reader = csv.reader(f)
for row in reader:
if len(row) != 3:
continue
i, j, distance = int(row[0]), int(row[1]), float(row[2])
A[id_dict[i], id_dict[j]] = 1
distaneA[id_dict[i], id_dict[j]] = distance
return A, distaneA
else:
with open(distance_df_filename, 'r') as f:
f.readline()
reader = csv.reader(f)
for row in reader:
if len(row) != 3:
continue
i, j, distance = int(row[0]), int(row[1]), float(row[2])
A[i, j] = 1
distaneA[i, j] = distance
return A, distaneA
def scaled_Laplacian(W):
'''
compute \tilde{L}
Parameters
----------
W: np.ndarray, shape is (N, N), N is the num of vertices
Returns
----------
scaled_Laplacian: np.ndarray, shape (N, N)
'''
assert W.shape[0] == W.shape[1]
D = np.diag(np.sum(W, axis=1))
L = D - W
lambda_max = eigs(L, k=1, which='LR')[0].real
return (2 * L) / lambda_max - np.identity(W.shape[0])
def cheb_polynomial(L_tilde, K):
'''
compute a list of chebyshev polynomials from T_0 to T_{K-1}
Parameters
----------
L_tilde: scaled Laplacian, np.ndarray, shape (N, N)
K: the maximum order of chebyshev polynomials
Returns
----------
cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}
'''
N = L_tilde.shape[0]
cheb_polynomials = [np.identity(N), L_tilde.copy()]
for i in range(2, K):
cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])
return cheb_polynomials
def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
'''
这个是为PEMS的数据准备的函数
将x,y都处理成归一化到[-1,1]之前的数据;
每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
该函数会把hour, day, week的时间串起来;
注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
:param graph_signal_matrix_filename: str
:param num_of_hours: int
:param num_of_days: int
:param num_of_weeks: int
:param DEVICE:
:param batch_size: int
:return:
three DataLoaders, each dataloader contains:
test_x_tensor: (B, N_nodes, in_feature, T_input)
test_decoder_input_tensor: (B, N_nodes, T_output)
test_target_tensor: (B, N_nodes, T_output)
'''
file = os.path.basename(graph_signal_matrix_filename).split('.')[0]
dirpath = os.path.dirname(graph_signal_matrix_filename)
filename = os.path.join(dirpath,
file) +'_astcgn'
print('load file:', filename)
file_data = np.load(filename + '.npz')
train_x = file_data['train_x'] # (10181, 307, 3, 12)
train_x = train_x[:, :, 0:5, :]
train_target = file_data['train_target'] # (10181, 307, 12)
val_x = file_data['val_x']
val_x = val_x[:, :, 0:5, :]
val_target = file_data['val_target']
test_x = file_data['test_x']
test_x = test_x[:, :, 0:5, :]
test_target = file_data['test_target']
mean = file_data['mean'][:, :, 0:5, :] # (1, 1, 3, 1)
std = file_data['std'][:, :, 0:5, :] # (1, 1, 3, 1)
# ------- train_loader -------
train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
# ------- val_loader -------
val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# ------- test_loader -------
test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# print
print('train:', train_x_tensor.size(), train_target_tensor.size())
print('val:', val_x_tensor.size(), val_target_tensor.size())
print('test:', test_x_tensor.size(), test_target_tensor.size())
return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std
def compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag,missing_value,sw, epoch, limit=None):
'''
for rnn, compute mean loss on validation set
:param net: model
:param val_loader: torch.utils.data.utils.DataLoader
:param criterion: torch.nn.MSELoss
:param sw: tensorboardX.SummaryWriter
:param global_step: int, current global_step
:param limit: int,
:return: val_loss
'''
net.train(False) # ensure dropout layers are in evaluation mode
with torch.no_grad():
val_loader_length = len(val_loader) # nb of batch
tmp = [] # 记录了所有batch的loss
for batch_index, batch_data in enumerate(val_loader):
encoder_inputs, labels = batch_data
outputs = net(encoder_inputs)
if masked_flag:
loss = criterion(outputs, labels, missing_value)
else:
loss = criterion(outputs, labels)
tmp.append(loss.item())
if batch_index % 100 == 0:
print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
if (limit is not None) and batch_index >= limit:
break
validation_loss = sum(tmp) / len(tmp)
sw.add_scalar('validation_loss', validation_loss, epoch)
return validation_loss
# def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
# '''
# for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
#
# :param net: model
# :param test_loader: torch.utils.data.utils.DataLoader
# :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
# :param sw:
# :param epoch: int, current epoch
# :param _mean: (1, 1, 3(features), 1)
# :param _std: (1, 1, 3(features), 1)
# '''
#
# net.train(False) # ensure dropout layers are in test mode
#
# with torch.no_grad():
#
# test_loader_length = len(test_loader)
#
# test_target_tensor = test_target_tensor.cpu().numpy()
#
# prediction = [] # 存储所有batch的output
#
# for batch_index, batch_data in enumerate(test_loader):
#
# encoder_inputs, labels = batch_data
#
# outputs = net(encoder_inputs)
#
# prediction.append(outputs.detach().cpu().numpy())
#
# if batch_index % 100 == 0:
# print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
#
# prediction = np.concatenate(prediction, 0) # (batch, T', 1)
# prediction_length = prediction.shape[2]
#
# for i in range(prediction_length):
# assert test_target_tensor.shape[0] == prediction.shape[0]
# print('current epoch: %s, predict %s points' % (epoch, i))
# mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
# rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
# mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
# print('MAE: %.2f' % (mae))
# print('RMSE: %.2f' % (rmse))
# print('MAPE: %.2f' % (mape))
# print()
# if sw:
# sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
# sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
# sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)
def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
'''
:param net: nn.Module
:param data_loader: torch.utils.data.utils.DataLoader
:param data_target_tensor: tensor
:param epoch: int
:param _mean: (1, 1, 3, 1)
:param _std: (1, 1, 3, 1)
:param params_path: the path for saving the results
:return:
'''
net.train(False) # ensure dropout layers are in test mode
with torch.no_grad():
data_target_tensor = data_target_tensor.cpu().numpy()
loader_length = len(data_loader) # nb of batch
prediction = [] # 存储所有batch的output
input = [] # 存储所有batch的input
for batch_index, batch_data in enumerate(data_loader):
encoder_inputs, labels = batch_data
input.append(encoder_inputs[:, :, 0:1].cpu().numpy()) # (batch, T', 1)
outputs = net(encoder_inputs)
prediction.append(outputs.detach().cpu().numpy())
if batch_index % 100 == 0:
print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))
input = np.concatenate(input, 0)
input = re_normalization(input, _mean, _std)
prediction = np.concatenate(prediction, 0) # (batch, T', 1)
print('input:', input.shape)
print('prediction:', prediction.shape)
print('data_target_tensor:', data_target_tensor.shape)
output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)
# 计算误差
excel_list = []
prediction_length = prediction.shape[2]
for i in range(prediction_length):
assert data_target_tensor.shape[0] == prediction.shape[0]
print('current epoch: %s, predict %s points' % (global_step, i))
if metric_method == 'mask':
mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
else :
mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
print('MAE: %.2f' % (mae))
print('RMSE: %.2f' % (rmse))
print('MAPE: %.2f' % (mape))
excel_list.extend([mae, rmse, mape])
# print overall results
if metric_method == 'mask':
mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
else :
mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
print('all MAE: %.2f' % (mae))
print('all RMSE: %.2f' % (rmse))
print('all MAPE: %.2f' % (mape))
excel_list.extend([mae, rmse, mape])
print(excel_list)
|