File size: 6,045 Bytes
bdbd148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import torch.nn.functional as F

class PatchEmbed(nn.Module):
    """ 将图像分成patch并进行embedding """
    def __init__(self, img_size=32, patch_size=4, in_chans=3, embed_dim=96):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.n_patches = (img_size // patch_size) ** 2
        
        self.proj = nn.Conv2d(
            in_chans, embed_dim,
            kernel_size=patch_size, stride=patch_size
        )

    def forward(self, x):
        x = self.proj(x)               # (B, E, H/P, W/P)
        x = x.flatten(2)               # (B, E, N)
        x = x.transpose(1, 2)          # (B, N, E)
        return x

class Attention(nn.Module):
    """ 多头自注意力机制 """
    def __init__(self, dim, n_heads=8, qkv_bias=True, attn_p=0., proj_p=0.):
        super().__init__()
        self.n_heads = n_heads
        self.dim = dim
        self.head_dim = dim // n_heads
        self.scale = self.head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_p)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_p)

    def forward(self, x):
        n_samples, n_tokens, dim = x.shape

        if dim != self.dim:
            raise ValueError

        qkv = self.qkv(x)                                           # (n_samples, n_patches + 1, 3 * dim)
        qkv = qkv.reshape(
            n_samples, n_tokens, 3, self.n_heads, self.head_dim
        )                                                           # (n_samples, n_patches + 1, 3, n_heads, head_dim)
        qkv = qkv.permute(2, 0, 3, 1, 4)                          # (3, n_samples, n_heads, n_patches + 1, head_dim)
        q, k, v = qkv[0], qkv[1], qkv[2]                          # each with shape (n_samples, n_heads, n_patches + 1, head_dim)

        k_t = k.transpose(-2, -1)                                  # (n_samples, n_heads, head_dim, n_patches + 1)
        dp = (q @ k_t) * self.scale                               # (n_samples, n_heads, n_patches + 1, n_patches + 1)
        attn = dp.softmax(dim=-1)                                 # (n_samples, n_heads, n_patches + 1, n_patches + 1)
        attn = self.attn_drop(attn)

        weighted_avg = attn @ v                                    # (n_samples, n_heads, n_patches + 1, head_dim)
        weighted_avg = weighted_avg.transpose(1, 2)                # (n_samples, n_patches + 1, n_heads, head_dim)
        weighted_avg = weighted_avg.flatten(2)                     # (n_samples, n_patches + 1, dim)

        x = self.proj(weighted_avg)                               # (n_samples, n_patches + 1, dim)
        x = self.proj_drop(x)                                     # (n_samples, n_patches + 1, dim)

        return x

class MLP(nn.Module):
    """ 多层感知机 """
    def __init__(self, in_features, hidden_features, out_features, p=0.):
        super().__init__()
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = nn.GELU()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(p)

    def forward(self, x):
        x = self.fc1(x)               # (n_samples, n_patches + 1, hidden_features)
        x = self.act(x)               # (n_samples, n_patches + 1, hidden_features)
        x = self.drop(x)              # (n_samples, n_patches + 1, hidden_features)
        x = self.fc2(x)               # (n_samples, n_patches + 1, out_features)
        x = self.drop(x)              # (n_samples, n_patches + 1, out_features)

        return x

class Block(nn.Module):
    """ Transformer编码器块 """
    def __init__(self, dim, n_heads, mlp_ratio=4.0, qkv_bias=True,
                 p=0., attn_p=0.):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, eps=1e-6)
        self.attn = Attention(
            dim,
            n_heads=n_heads,
            qkv_bias=qkv_bias,
            attn_p=attn_p,
            proj_p=p
        )
        self.norm2 = nn.LayerNorm(dim, eps=1e-6)
        hidden_features = int(dim * mlp_ratio)
        self.mlp = MLP(
            in_features=dim,
            hidden_features=hidden_features,
            out_features=dim,
        )

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x

class ViT(nn.Module):
    """ Vision Transformer """
    def __init__(
            self,
            img_size=32,
            patch_size=4,
            in_chans=3,
            n_classes=10,
            embed_dim=96,
            depth=12,
            n_heads=8,
            mlp_ratio=4.,
            qkv_bias=True,
            p=0.,
            attn_p=0.,
    ):
        super().__init__()

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(
            torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim)
        )
        self.pos_drop = nn.Dropout(p=p)

        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                n_heads=n_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                p=p,
                attn_p=attn_p,
            )
            for _ in range(depth)
        ])

        self.norm = nn.LayerNorm(embed_dim, eps=1e-6)
        self.head = nn.Linear(embed_dim, n_classes)

    def forward(self, x):
        n_samples = x.shape[0]
        x = self.patch_embed(x)

        cls_token = self.cls_token.expand(n_samples, -1, -1)
        x = torch.cat((cls_token, x), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        for block in self.blocks:
            x = block(x)

        x = self.norm(x)

        cls_token_final = x[:, 0]
        x = self.head(cls_token_final)

        return x