File size: 14,161 Bytes
e3d777b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import numpy as np
import torch
import torch.utils.data
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
import sys
project_path = "/content/gdrive//My Drive/CS5248_project"
sys.path.append(project_path + '/lib')
from metrics import masked_mape_np
from scipy.sparse.linalg import eigs
from metrics import masked_mape_np,  masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test


def re_normalization(x, mean, std):
    x = x * std + mean
    return x


def max_min_normalization(x, _max, _min):
    x = 1. * (x - _min)/(_max - _min)
    x = x * 2. - 1.
    return x


def re_max_min_normalization(x, _max, _min):
    x = (x + 1.) / 2.
    x = 1. * x * (_max - _min) + _min
    return x


def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
    '''
    Parameters
    ----------
    distance_df_filename: str, path of the csv file contains edges information

    num_of_vertices: int, the number of vertices

    Returns
    ----------
    A: np.ndarray, adjacency matrix

    '''
    if 'npy' in distance_df_filename:

        adj_mx = np.load(distance_df_filename)

        return adj_mx, None

    else:

        import csv

        A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
                     dtype=np.float32)

        distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
                            dtype=np.float32)

        if id_filename:

            with open(id_filename, 'r') as f:
                id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))}  # 把节点id(idx)映射成从0开始的索引

            with open(distance_df_filename, 'r') as f:
                f.readline()
                reader = csv.reader(f)
                for row in reader:
                    if len(row) != 3:
                        continue
                    i, j, distance = int(row[0]), int(row[1]), float(row[2])
                    A[id_dict[i], id_dict[j]] = 1
                    distaneA[id_dict[i], id_dict[j]] = distance
            return A, distaneA

        else:

            with open(distance_df_filename, 'r') as f:
                f.readline()
                reader = csv.reader(f)
                for row in reader:
                    if len(row) != 3:
                        continue
                    i, j, distance = int(row[0]), int(row[1]), float(row[2])
                    A[i, j] = 1
                    distaneA[i, j] = distance
            return A, distaneA


def scaled_Laplacian(W):
    '''
    compute \tilde{L}

    Parameters
    ----------
    W: np.ndarray, shape is (N, N), N is the num of vertices

    Returns
    ----------
    scaled_Laplacian: np.ndarray, shape (N, N)

    '''

    assert W.shape[0] == W.shape[1]

    D = np.diag(np.sum(W, axis=1))

    L = D - W

    lambda_max = eigs(L, k=1, which='LR')[0].real

    return (2 * L) / lambda_max - np.identity(W.shape[0])


def cheb_polynomial(L_tilde, K):
    '''
    compute a list of chebyshev polynomials from T_0 to T_{K-1}

    Parameters
    ----------
    L_tilde: scaled Laplacian, np.ndarray, shape (N, N)

    K: the maximum order of chebyshev polynomials

    Returns
    ----------
    cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}

    '''

    N = L_tilde.shape[0]

    cheb_polynomials = [np.identity(N), L_tilde.copy()]

    for i in range(2, K):
        cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])

    return cheb_polynomials


def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
    '''
    这个是为PEMS的数据准备的函数
    将x,y都处理成归一化到[-1,1]之前的数据;
    每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
    该函数会把hour, day, week的时间串起来;
    注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
    这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
    :param graph_signal_matrix_filename: str
    :param num_of_hours: int
    :param num_of_days: int
    :param num_of_weeks: int
    :param DEVICE:
    :param batch_size: int
    :return:
    three DataLoaders, each dataloader contains:
    test_x_tensor: (B, N_nodes, in_feature, T_input)
    test_decoder_input_tensor: (B, N_nodes, T_output)
    test_target_tensor: (B, N_nodes, T_output)

    '''

    file = os.path.basename(graph_signal_matrix_filename).split('.')[0]

    dirpath = os.path.dirname(graph_signal_matrix_filename)

    filename = os.path.join(dirpath,
                            file) +'_astcgn'

    print('load file:', filename)

    file_data = np.load(filename + '.npz')
    train_x = file_data['train_x']  # (10181, 307, 3, 12)
    train_x = train_x[:, :, 0:5, :]
    train_target = file_data['train_target']  # (10181, 307, 12)

    val_x = file_data['val_x']
    val_x = val_x[:, :, 0:5, :]
    val_target = file_data['val_target']

    test_x = file_data['test_x']
    test_x = test_x[:, :, 0:5, :]
    test_target = file_data['test_target']

    mean = file_data['mean'][:, :, 0:5, :]  # (1, 1, 3, 1)
    std = file_data['std'][:, :, 0:5, :]  # (1, 1, 3, 1)

    # ------- train_loader -------
    train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE)  # (B, N, F, T)
    train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE)  # (B, N, T)

    train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)

    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)

    # ------- val_loader -------
    val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE)  # (B, N, F, T)
    val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE)  # (B, N, T)

    val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)

    val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

    # ------- test_loader -------
    test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE)  # (B, N, F, T)
    test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE)  # (B, N, T)

    test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)

    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    # print
    print('train:', train_x_tensor.size(), train_target_tensor.size())
    print('val:', val_x_tensor.size(), val_target_tensor.size())
    print('test:', test_x_tensor.size(), test_target_tensor.size())

    return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std


def compute_val_loss_mstgcn(net, val_loader, criterion,  masked_flag,missing_value,sw, epoch, limit=None):
    '''
    for rnn, compute mean loss on validation set
    :param net: model
    :param val_loader: torch.utils.data.utils.DataLoader
    :param criterion: torch.nn.MSELoss
    :param sw: tensorboardX.SummaryWriter
    :param global_step: int, current global_step
    :param limit: int,
    :return: val_loss
    '''

    net.train(False)  # ensure dropout layers are in evaluation mode

    with torch.no_grad():

        val_loader_length = len(val_loader)  # nb of batch

        tmp = []  # 记录了所有batch的loss

        for batch_index, batch_data in enumerate(val_loader):
            encoder_inputs, labels = batch_data
            outputs = net(encoder_inputs)
            if masked_flag:
                loss = criterion(outputs, labels, missing_value)
            else:
                loss = criterion(outputs, labels)

            tmp.append(loss.item())
            if batch_index % 100 == 0:
                print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
            if (limit is not None) and batch_index >= limit:
                break

        validation_loss = sum(tmp) / len(tmp)
        sw.add_scalar('validation_loss', validation_loss, epoch)
    return validation_loss


# def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
#     '''
#     for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
#
#     :param net: model
#     :param test_loader: torch.utils.data.utils.DataLoader
#     :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
#     :param sw:
#     :param epoch: int, current epoch
#     :param _mean: (1, 1, 3(features), 1)
#     :param _std: (1, 1, 3(features), 1)
#     '''
#
#     net.train(False)  # ensure dropout layers are in test mode
#
#     with torch.no_grad():
#
#         test_loader_length = len(test_loader)
#
#         test_target_tensor = test_target_tensor.cpu().numpy()
#
#         prediction = []  # 存储所有batch的output
#
#         for batch_index, batch_data in enumerate(test_loader):
#
#             encoder_inputs, labels = batch_data
#
#             outputs = net(encoder_inputs)
#
#             prediction.append(outputs.detach().cpu().numpy())
#
#             if batch_index % 100 == 0:
#                 print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
#
#         prediction = np.concatenate(prediction, 0)  # (batch, T', 1)
#         prediction_length = prediction.shape[2]
#
#         for i in range(prediction_length):
#             assert test_target_tensor.shape[0] == prediction.shape[0]
#             print('current epoch: %s, predict %s points' % (epoch, i))
#             mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
#             rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
#             mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
#             print('MAE: %.2f' % (mae))
#             print('RMSE: %.2f' % (rmse))
#             print('MAPE: %.2f' % (mape))
#             print()
#             if sw:
#                 sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
#                 sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
#                 sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)


def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
    '''

    :param net: nn.Module
    :param data_loader: torch.utils.data.utils.DataLoader
    :param data_target_tensor: tensor
    :param epoch: int
    :param _mean: (1, 1, 3, 1)
    :param _std: (1, 1, 3, 1)
    :param params_path: the path for saving the results
    :return:
    '''
    net.train(False)  # ensure dropout layers are in test mode

    with torch.no_grad():

        data_target_tensor = data_target_tensor.cpu().numpy()

        loader_length = len(data_loader)  # nb of batch

        prediction = []  # 存储所有batch的output

        input = []  # 存储所有batch的input

        for batch_index, batch_data in enumerate(data_loader):

            encoder_inputs, labels = batch_data

            input.append(encoder_inputs[:, :, 0:1].cpu().numpy())  # (batch, T', 1)

            outputs = net(encoder_inputs)

            prediction.append(outputs.detach().cpu().numpy())

            if batch_index % 100 == 0:
                print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))

        input = np.concatenate(input, 0)

        input = re_normalization(input, _mean, _std)

        prediction = np.concatenate(prediction, 0)  # (batch, T', 1)

        print('input:', input.shape)
        print('prediction:', prediction.shape)
        print('data_target_tensor:', data_target_tensor.shape)
        output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
        np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)

        # 计算误差
        excel_list = []
        prediction_length = prediction.shape[2]

        for i in range(prediction_length):
            assert data_target_tensor.shape[0] == prediction.shape[0]
            print('current epoch: %s, predict %s points' % (global_step, i))
            if metric_method == 'mask':
                mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
                rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
                mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
            else :
                mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
                rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
                mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
            print('MAE: %.2f' % (mae))
            print('RMSE: %.2f' % (rmse))
            print('MAPE: %.2f' % (mape))
            excel_list.extend([mae, rmse, mape])

        # print overall results
        if metric_method == 'mask':
            mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
            rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
            mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
        else :
            mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
            rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
            mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
        print('all MAE: %.2f' % (mae))
        print('all RMSE: %.2f' % (rmse))
        print('all MAPE: %.2f' % (mape))
        excel_list.extend([mae, rmse, mape])
        print(excel_list)