File size: 1,738 Bytes
e3d777b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import argparse
import os
import time
from dgl.data import QM9Dataset
from dgl.dataloading import GraphDataLoader
from rdkit import Chem
from rdkit import RDLogger;
from torch.utils.data import Dataset
import torch.nn.functional as F
from tqdm import tqdm
import ast
from QM9_dataset_class import PreprocessedQM9Dataset
RDLogger.DisableLog('rdApp.*')
import torch
import torch.nn as nn
import torch.optim as optim
QM9_label_keys = ['mu','alpha','homo','lumo','gap','r2','zpve','U0','U','H','G','Cv']
def prepare_main(label_keys=None, cutoff=5.0,save_path="dataset"):
assert save_path !="","save_path shouldn't be empty"
if label_keys is None:
raise ValueError('label_keys cannot be None')
for label_key in label_keys:
if label_key not in QM9_label_keys:
raise ValueError('label_key must be in QM9_label_keys,refer:https://docs.dgl.ai/en/0.8.x/generated/dgl.data.QM9Dataset.html')
dataset = QM9Dataset(label_keys=label_keys, cutoff=5.0)
dataset_processed = PreprocessedQM9Dataset(dataset)
print("Store processed QM9 dataset:",save_path)
dataset_processed.save_dataset("dataset")
return dataset_processed
def main():
parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
parser.add_argument('--label_keys', nargs='+', help="label keys in QM9 dataset,like 'mu' 'gap'....")
parser.add_argument('--cutoff', type=float, default=5.0, help="cutoff for atom number")
parser.add_argument('--save_path', type=str, default="dataset", help="processed_dataset save path")
args = parser.parse_args()
prepare_main(label_keys=args.label_keys, cutoff=args.cutoff)
if __name__ == '__main__':
main() |