File size: 5,270 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
'''
LeNet5 in PyTorch
LeNet5是由Yann LeCun等人在1998年提出的一个经典卷积神经网络模型。
主要用于手写数字识别,具有以下特点:
1. 使用卷积层提取特征
2. 使用平均池化层降低特征维度
3. 使用全连接层进行分类
4. 网络结构简单,参数量少
网络架构:
5x5 conv, 6 2x2 pool 5x5 conv, 16 2x2 pool FC 120 FC 84 FC 10
input(32x32x3) -> [conv1+relu+pool] --------> 28x28x6 -----> 14x14x6 -----> 10x10x16 -----> 5x5x16 -> 120 -> 84 -> 10
stride 1 stride 2 stride 1 stride 2
参考论文:
[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition,"
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
"""卷积块模块
包含: 卷积层 -> ReLU -> 最大池化层
Args:
in_channels (int): 输入通道数
out_channels (int): 输出通道数
kernel_size (int): 卷积核大小
stride (int): 卷积步长
padding (int): 填充大小
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding
)
self.relu = nn.ReLU(inplace=True) # inplace操作可以节省内存
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
"""前向传播
Args:
x (torch.Tensor): 输入特征图
Returns:
torch.Tensor: 输出特征图
"""
x = self.conv(x)
x = self.relu(x)
x = self.pool(x)
return x
class LeNet5(nn.Module):
'''LeNet5网络模型
网络结构:
1. 卷积层1: 3通道输入,6个5x5卷积核,步长1
2. 最大池化层1: 2x2窗口,步长2
3. 卷积层2: 6通道输入,16个5x5卷积核,步长1
4. 最大池化层2: 2x2窗口,步长2
5. 全连接层1: 400->120
6. 全连接层2: 120->84
7. 全连接层3: 84->num_classes
Args:
num_classes (int): 分类数量,默认为10
init_weights (bool): 是否初始化权重,默认为True
'''
def __init__(self, num_classes=10, init_weights=True):
super(LeNet5, self).__init__()
# 第一个卷积块: 32x32x3 -> 28x28x6 -> 14x14x6
self.conv1 = ConvBlock(
in_channels=3,
out_channels=6,
kernel_size=5,
stride=1
)
# 第二个卷积块: 14x14x6 -> 10x10x16 -> 5x5x16
self.conv2 = ConvBlock(
in_channels=6,
out_channels=16,
kernel_size=5,
stride=1
)
# 全连接层
self.classifier = nn.Sequential(
nn.Linear(5*5*16, 120),
nn.ReLU(inplace=True),
nn.Linear(120, 84),
nn.ReLU(inplace=True),
nn.Linear(84, num_classes)
)
# 初始化权重
if init_weights:
self._initialize_weights()
def forward(self, x):
'''前向传播
Args:
x (torch.Tensor): 输入图像张量,[N,3,32,32]
Returns:
torch.Tensor: 输出预测张量,[N,num_classes]
'''
# 特征提取
x = self.conv1(x) # -> [N,6,14,14]
x = self.conv2(x) # -> [N,16,5,5]
# 分类
x = torch.flatten(x, 1) # -> [N,16*5*5]
x = self.classifier(x) # -> [N,num_classes]
return x
def _initialize_weights(self):
'''初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- 线性层权重采用normal_初始化
- 所有偏置项初始化为0
'''
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 采用kaiming初始化,适合ReLU激活函数
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
# 采用正态分布初始化
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def test():
"""测试函数
创建模型并进行前向传播测试,打印模型结构和参数信息
"""
# 创建模型
net = LeNet5()
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(2,3,32,32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (2,3,32,32))
if __name__ == '__main__':
test()
|