File size: 4,982 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
'''
MobileNetv1 in PyTorch.
论文: "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"
参考: https://arxiv.org/abs/1704.04861
主要特点:
1. 使用深度可分离卷积(Depthwise Separable Convolution)减少参数量和计算量
2. 引入宽度乘子(Width Multiplier)和分辨率乘子(Resolution Multiplier)进一步压缩模型
3. 适用于移动设备和嵌入式设备的轻量级CNN架构
'''
import torch
import torch.nn as nn
class Block(nn.Module):
'''深度可分离卷积块 (Depthwise Separable Convolution Block)
包含:
1. 深度卷积(Depthwise Conv): 对每个通道单独进行空间卷积
2. 逐点卷积(Pointwise Conv): 1x1卷积实现通道混合
Args:
in_channels: 输入通道数
out_channels: 输出通道数
stride: 卷积步长
'''
def __init__(self, in_channels, out_channels, stride=1):
super(Block, self).__init__()
# 深度卷积 - 每个通道单独进行3x3卷积
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=in_channels, # groups=in_channels 即为深度可分离卷积
bias=False
)
self.bn1 = nn.BatchNorm2d(in_channels)
self.relu1 = nn.ReLU(inplace=True)
# 逐点卷积 - 1x1卷积用于通道混合
self.conv2 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False
)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu2 = nn.ReLU(inplace=True)
def forward(self, x):
# 深度卷积
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
# 逐点卷积
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
return x
class MobileNet(nn.Module):
'''MobileNet v1网络
Args:
num_classes: 分类数量
alpha: 宽度乘子,用于控制网络宽度(默认1.0)
beta: 分辨率乘子,用于控制输入分辨率(默认1.0)
init_weights: 是否初始化权重
'''
# 网络配置: (输出通道数, 步长),步长默认为1
cfg = [64, (128,2), 128, (256,2), 256, (512,2),
512, 512, 512, 512, 512, (1024,2), 1024]
def __init__(self, num_classes=10, alpha=1.0, beta=1.0, init_weights=True):
super(MobileNet, self).__init__()
# 第一层标准卷积
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True)
)
# 深度可分离卷积层
self.layers = self._make_layers(in_channels=32)
# 全局平均池化和分类器
self.avg = nn.AdaptiveAvgPool2d(1) # 自适应平均池化,输出大小为1x1
self.linear = nn.Linear(1024, num_classes)
# 初始化权重
if init_weights:
self._initialize_weights()
def _make_layers(self, in_channels):
'''构建深度可分离卷积层
Args:
in_channels: 输入通道数
'''
layers = []
for x in self.cfg:
out_channels = x if isinstance(x, int) else x[0]
stride = 1 if isinstance(x, int) else x[1]
layers.append(Block(in_channels, out_channels, stride))
in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
# 标准卷积
x = self.conv1(x)
# 深度可分离卷积层
x = self.layers(x)
# 全局平均池化和分类器
x = self.avg(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
def _initialize_weights(self):
'''初始化模型权重'''
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 使用kaiming初始化卷积层
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
# 初始化BN层
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
# 初始化全连接层
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def test():
"""测试函数"""
net = MobileNet()
x = torch.randn(2, 3, 32, 32)
y = net(x)
print(y.size())
# 打印模型结构
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (2, 3, 32, 32))
if __name__ == '__main__':
test() |