File size: 7,890 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
'''
MobileNetV3 in PyTorch.
论文: "Searching for MobileNetV3"
参考: https://arxiv.org/abs/1905.02244
主要特点:
1. 引入基于NAS的网络架构搜索
2. 使用改进的SE注意力机块
3. 使用h-swish激活函数
4. 重新设计了网络的最后几层
5. 提供了Large和Small两个版本
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_activation(name):
'''获取激活函数
Args:
name: 激活函数名称 ('relu' 或 'hardswish')
'''
if name == 'relu':
return nn.ReLU(inplace=True)
elif name == 'hardswish':
return nn.Hardswish(inplace=True)
else:
raise NotImplementedError
class SEModule(nn.Module):
'''Squeeze-and-Excitation模块
通过全局平均池化和两层全连接网络学习通道注意力权重
Args:
channel: 输入通道数
reduction: 降维比例
'''
def __init__(self, channel, reduction=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Hardsigmoid(inplace=True)
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c) # squeeze
y = self.fc(y).view(b, c, 1, 1) # excitation
return x * y.expand_as(x) # scale
class Bottleneck(nn.Module):
'''MobileNetV3 Bottleneck
包含:
1. Expansion layer (1x1 conv)
2. Depthwise layer (3x3 or 5x5 depthwise conv)
3. SE module (optional)
4. Projection layer (1x1 conv)
Args:
in_channels: 输入通道数
exp_channels: 扩展层通道数
out_channels: 输出通道数
kernel_size: 深度卷积核大小
stride: 步长
use_SE: 是否使用SE模块
activation: 激活函数类型
use_residual: 是否使用残差连接
'''
def __init__(self, in_channels, exp_channels, out_channels, kernel_size,
stride, use_SE, activation, use_residual=True):
super(Bottleneck, self).__init__()
self.use_residual = use_residual and stride == 1 and in_channels == out_channels
padding = (kernel_size - 1) // 2
layers = []
# Expansion layer
if exp_channels != in_channels:
layers.extend([
nn.Conv2d(in_channels, exp_channels, 1, bias=False),
nn.BatchNorm2d(exp_channels),
get_activation(activation)
])
# Depthwise conv
layers.extend([
nn.Conv2d(
exp_channels, exp_channels, kernel_size,
stride, padding, groups=exp_channels, bias=False
),
nn.BatchNorm2d(exp_channels),
get_activation(activation)
])
# SE module
if use_SE:
layers.append(SEModule(exp_channels))
# Projection layer
layers.extend([
nn.Conv2d(exp_channels, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels)
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_residual:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
'''MobileNetV3网络
Args:
num_classes: 分类数量
mode: 'large' 或 'small',选择网络版本
'''
def __init__(self, num_classes=10, mode='small'):
super(MobileNetV3, self).__init__()
if mode == 'large':
# MobileNetV3-Large架构
self.config = [
# k, exp, out, SE, activation, stride
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', 2],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', 2],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hardswish', 2],
[3, 200, 80, False, 'hardswish', 1],
[3, 184, 80, False, 'hardswish', 1],
[3, 184, 80, False, 'hardswish', 1],
[3, 480, 112, True, 'hardswish', 1],
[3, 672, 112, True, 'hardswish', 1],
[5, 672, 160, True, 'hardswish', 2],
[5, 960, 160, True, 'hardswish', 1],
[5, 960, 160, True, 'hardswish', 1],
]
init_conv_out = 16
final_conv_out = 960
else:
# MobileNetV3-Small架构
self.config = [
# k, exp, out, SE, activation, stride
[3, 16, 16, True, 'relu', 2],
[3, 72, 24, False, 'relu', 2],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hardswish', 2],
[5, 240, 40, True, 'hardswish', 1],
[5, 240, 40, True, 'hardswish', 1],
[5, 120, 48, True, 'hardswish', 1],
[5, 144, 48, True, 'hardswish', 1],
[5, 288, 96, True, 'hardswish', 2],
[5, 576, 96, True, 'hardswish', 1],
[5, 576, 96, True, 'hardswish', 1],
]
init_conv_out = 16
final_conv_out = 576
# 第一层卷积
self.conv_stem = nn.Sequential(
nn.Conv2d(3, init_conv_out, 3, 2, 1, bias=False),
nn.BatchNorm2d(init_conv_out),
get_activation('hardswish')
)
# 构建Bottleneck层
features = []
in_channels = init_conv_out
for k, exp, out, se, activation, stride in self.config:
features.append(
Bottleneck(in_channels, exp, out, k, stride, se, activation)
)
in_channels = out
self.features = nn.Sequential(*features)
# 最后的卷积层
self.conv_head = nn.Sequential(
nn.Conv2d(in_channels, final_conv_out, 1, bias=False),
nn.BatchNorm2d(final_conv_out),
get_activation('hardswish')
)
# 分类器
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Sequential(
nn.Linear(final_conv_out, num_classes)
)
# 初始化权重
self._initialize_weights()
def _initialize_weights(self):
'''初始化模型权重'''
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.conv_stem(x)
x = self.features(x)
x = self.conv_head(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def test():
"""测试函数"""
# 测试Large版本
net_large = MobileNetV3(mode='large')
x = torch.randn(2, 3, 32, 32)
y = net_large(x)
print('Large output size:', y.size())
# 测试Small版本
net_small = MobileNetV3(mode='small')
y = net_small(x)
print('Small output size:', y.size())
# 打印模型结构
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net_small = net_small.to(device)
summary(net_small, (2, 3, 32, 32))
if __name__ == '__main__':
test()
|