File size: 8,992 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
'''
ResNet in PyTorch.
ResNet(深度残差网络)是由微软研究院的Kaiming He等人提出的深度神经网络架构。
主要创新点是引入了残差学习的概念,通过跳跃连接解决了深层网络的退化问题。
主要特点:
1. 引入残差块(Residual Block),使用跳跃连接
2. 使用Batch Normalization进行归一化
3. 支持更深的网络结构(最深可达152层)
4. 在多个计算机视觉任务上取得了突破性进展
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
"""基础残差块
用于ResNet18/34等浅层网络。结构为:
x -> Conv -> BN -> ReLU -> Conv -> BN -> (+) -> ReLU
|------------------------------------------|
Args:
in_channels: 输入通道数
out_channels: 输出通道数
stride: 步长,用于下采样,默认为1
注意:基础模块没有通道压缩,expansion=1
"""
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock,self).__init__()
self.features = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(True),
nn.Conv2d(out_channels,out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels)
)
# 如果输入输出维度不等,则使用1x1卷积层来改变维度
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != self.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * out_channels),
)
def forward(self, x):
out = self.features(x)
out += self.shortcut(x)
out = torch.relu(out)
return out
class Bottleneck(nn.Module):
"""瓶颈残差块
用于ResNet50/101/152等深层网络。结构为:
x -> 1x1Conv -> BN -> ReLU -> 3x3Conv -> BN -> ReLU -> 1x1Conv -> BN -> (+) -> ReLU
|-------------------------------------------------------------------|
Args:
in_channels: 输入通道数
zip_channels: 压缩后的通道数
stride: 步长,用于下采样,默认为1
注意:通过1x1卷积先压缩通道数,再还原,expansion=4
"""
expansion = 4
def __init__(self, in_channels, zip_channels, stride=1):
super(Bottleneck, self).__init__()
out_channels = self.expansion * zip_channels
self.features = nn.Sequential(
# 1x1卷积压缩通道
nn.Conv2d(in_channels, zip_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(zip_channels),
nn.ReLU(inplace=True),
# 3x3卷积提取特征
nn.Conv2d(zip_channels, zip_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(zip_channels),
nn.ReLU(inplace=True),
# 1x1卷积还原通道
nn.Conv2d(zip_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels)
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = self.features(x)
out += self.shortcut(x)
out = torch.relu(out)
return out
class ResNet(nn.Module):
"""ResNet模型
网络结构:
1. 一个卷积层用于特征提取
2. 四个残差层,每层包含多个残差块
3. 平均池化和全连接层进行分类
对于CIFAR10,特征图大小变化为:
(32,32,3) -> [Conv] -> (32,32,64) -> [Layer1] -> (32,32,64) -> [Layer2]
-> (16,16,128) -> [Layer3] -> (8,8,256) -> [Layer4] -> (4,4,512) -> [AvgPool]
-> (1,1,512) -> [FC] -> (num_classes)
Args:
block: 残差块类型(BasicBlock或Bottleneck)
num_blocks: 每层残差块数量的列表
num_classes: 分类数量,默认为10
verbose: 是否打印中间特征图大小
init_weights: 是否初始化权重
"""
def __init__(self, block, num_blocks, num_classes=10, verbose=False, init_weights=True):
super(ResNet, self).__init__()
self.verbose = verbose
self.in_channels = 64
# 第一层卷积
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
# 四个残差层
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# 分类层
self.avg_pool = nn.AvgPool2d(kernel_size=4)
self.classifier = nn.Linear(512 * block.expansion, num_classes)
if init_weights:
self._initialize_weights()
def _make_layer(self, block, out_channels, num_blocks, stride):
"""构建残差层
Args:
block: 残差块类型
out_channels: 输出通道数
num_blocks: 残差块数量
stride: 第一个残差块的步长(用于下采样)
Returns:
nn.Sequential: 残差层
"""
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x: 输入张量,[N,3,32,32]
Returns:
out: 输出张量,[N,num_classes]
"""
out = self.features(x)
if self.verbose:
print('block 1 output: {}'.format(out.shape))
out = self.layer1(out)
if self.verbose:
print('block 2 output: {}'.format(out.shape))
out = self.layer2(out)
if self.verbose:
print('block 3 output: {}'.format(out.shape))
out = self.layer3(out)
if self.verbose:
print('block 4 output: {}'.format(out.shape))
out = self.layer4(out)
if self.verbose:
print('block 5 output: {}'.format(out.shape))
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _initialize_weights(self):
"""初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- BN层参数采用常数初始化
- 线性层采用正态分布初始化
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def ResNet18(verbose=False):
"""ResNet-18模型"""
return ResNet(BasicBlock, [2,2,2,2], verbose=verbose)
def ResNet34(verbose=False):
"""ResNet-34模型"""
return ResNet(BasicBlock, [3,4,6,3], verbose=verbose)
def ResNet50(verbose=False):
"""ResNet-50模型"""
return ResNet(Bottleneck, [3,4,6,3], verbose=verbose)
def ResNet101(verbose=False):
"""ResNet-101模型"""
return ResNet(Bottleneck, [3,4,23,3], verbose=verbose)
def ResNet152(verbose=False):
"""ResNet-152模型"""
return ResNet(Bottleneck, [3,8,36,3], verbose=verbose)
def test():
"""测试函数"""
net = ResNet34()
x = torch.randn(2,3,32,32)
y = net(x)
print('Output shape:', y.size())
# 打印模型结构
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net,(2,3,32,32))
if __name__ == '__main__':
test() |