File size: 8,104 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
'''
SENet (Squeeze-and-Excitation Networks) in PyTorch.
SENet通过引入SE模块来自适应地重新校准通道特征响应。SE模块可以集成到现有的网络架构中,
通过显式建模通道之间的相互依赖关系,自适应地重新校准通道特征响应。
主要特点:
1. 引入Squeeze-and-Excitation(SE)模块,增强特征的表示能力
2. SE模块包含squeeze操作(全局平均池化)和excitation操作(两个FC层)
3. 通过attention机制来增强重要通道的权重,抑制不重要通道
4. 几乎可以嵌入到任何现有的网络结构中
Reference:
[1] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
Squeeze-and-Excitation Networks. CVPR 2018.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
"""基础残差块+SE模块
结构:
x -> Conv -> BN -> ReLU -> Conv -> BN -> SE -> (+) -> ReLU
|------------------------------------------|
Args:
in_channels: 输入通道数
channels: 输出通道数
stride: 步长,用于下采样,默认为1
"""
def __init__(self, in_channels, channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
# 残差连接
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channels)
)
# SE模块
self.squeeze = nn.AdaptiveAvgPool2d(1) # 全局平均池化
self.excitation = nn.Sequential(
nn.Conv2d(channels, channels//16, kernel_size=1), # 通道降维
nn.ReLU(inplace=True),
nn.Conv2d(channels//16, channels, kernel_size=1), # 通道升维
nn.Sigmoid() # 归一化到[0,1]
)
def forward(self, x):
# 主分支
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# SE模块
w = self.squeeze(out) # Squeeze
w = self.excitation(w) # Excitation
out = out * w # 特征重标定
# 残差连接
out += self.shortcut(x)
out = F.relu(out)
return out
class PreActBlock(nn.Module):
"""Pre-activation版本的基础块+SE模块
结构:
x -> BN -> ReLU -> Conv -> BN -> ReLU -> Conv -> SE -> (+)
|-------------------------------------------|
Args:
in_channels: 输入通道数
channels: 输出通道数
stride: 步长,用于下采样,默认为1
"""
def __init__(self, in_channels, channels, stride=1):
super(PreActBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False)
# 残差连接
if stride != 1 or in_channels != channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, channels, kernel_size=1, stride=stride, bias=False)
)
# SE模块
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Conv2d(channels, channels//16, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(channels//16, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
# Pre-activation
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
# 主分支
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
# SE模块
w = self.squeeze(out)
w = self.excitation(w)
out = out * w
# 残差连接
out += shortcut
return out
class SENet(nn.Module):
"""SENet模型
网络结构:
1. 一个卷积层进行特征提取
2. 四个残差层,每层包含多个带SE模块的残差块
3. 平均池化和全连接层进行分类
Args:
block: 残差块类型(BasicBlock或PreActBlock)
num_blocks: 每层残差块数量的列表
num_classes: 分类数量,默认为10
"""
def __init__(self, block, num_blocks, num_classes=10):
super(SENet, self).__init__()
self.in_channels = 64
# 第一层卷积
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
# 四个残差层
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# 分类层
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(512, num_classes)
# 初始化权重
self._initialize_weights()
def _make_layer(self, block, channels, num_blocks, stride):
"""构建残差层
Args:
block: 残差块类型
channels: 输出通道数
num_blocks: 残差块数量
stride: 第一个残差块的步长(用于下采样)
Returns:
nn.Sequential: 残差层
"""
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, channels, stride))
self.in_channels = channels
return nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x: 输入张量,[N,3,32,32]
Returns:
out: 输出张量,[N,num_classes]
"""
# 特征提取
out = F.relu(self.bn1(self.conv1(x)))
# 残差层
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
# 分类
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _initialize_weights(self):
"""初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- BN层参数采用常数初始化
- 线性层采用正态分布初始化
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def SENet18():
"""SENet-18模型"""
return SENet(PreActBlock, [2,2,2,2])
def test():
"""测试函数"""
# 创建模型
net = SENet18()
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(1,3,32,32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (1,3,32,32))
if __name__ == '__main__':
test() |