File size: 8,139 Bytes
bdbd148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
'''
ShuffleNet in PyTorch.

ShuffleNet是一个专门为移动设备设计的高效卷积神经网络。其主要创新点在于使用了两个新操作:
1. 逐点组卷积(pointwise group convolution)
2. 通道重排(channel shuffle)
这两个操作大大降低了计算复杂度,同时保持了良好的准确率。

主要特点:
1. 使用组卷积减少参数量和计算量
2. 使用通道重排操作使不同组之间的信息可以流通
3. 使用深度可分离卷积进一步降低计算复杂度
4. 设计了多个计算复杂度版本以适应不同的设备

Reference:
[1] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
    ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F


class ShuffleBlock(nn.Module):
    """通道重排模块
    
    通过重新排列通道的顺序来实现不同组之间的信息交流。
    
    Args:
        groups (int): 分组数量
    """
    def __init__(self, groups):
        super(ShuffleBlock, self).__init__()
        self.groups = groups

    def forward(self, x):
        """通道重排的前向传播
        
        步骤:
        1. [N,C,H,W] -> [N,g,C/g,H,W]  # 重塑为g组
        2. [N,g,C/g,H,W] -> [N,C/g,g,H,W]  # 转置g维度
        3. [N,C/g,g,H,W] -> [N,C,H,W]  # 重塑回原始形状
        
        Args:
            x: 输入张量,[N,C,H,W]
            
        Returns:
            out: 通道重排后的张量,[N,C,H,W]
        """
        N, C, H, W = x.size()
        g = self.groups
        return x.view(N,g,C//g,H,W).permute(0,2,1,3,4).reshape(N,C,H,W)


class Bottleneck(nn.Module):
    """ShuffleNet的基本模块
    
    结构:
    x -> 1x1 GConv -> BN -> Shuffle -> 3x3 DWConv -> BN -> 1x1 GConv -> BN -> (+) -> ReLU
         |---------------------|
         
    Args:
        in_channels (int): 输入通道数
        out_channels (int): 输出通道数
        stride (int): 步长,用于下采样
        groups (int): 组卷积的分组数
    """
    def __init__(self, in_channels, out_channels, stride, groups):
        super(Bottleneck, self).__init__()
        self.stride = stride
        
        # 确定中间通道数和分组数
        mid_channels = out_channels // 4
        g = 1 if in_channels == 24 else groups
        
        # 第一个1x1组卷积
        self.conv1 = nn.Conv2d(in_channels, mid_channels, 
                              kernel_size=1, groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_channels)
        self.shuffle1 = ShuffleBlock(groups=g)
        
        # 3x3深度可分离卷积
        self.conv2 = nn.Conv2d(mid_channels, mid_channels,
                              kernel_size=3, stride=stride, padding=1, 
                              groups=mid_channels, bias=False)
        self.bn2 = nn.BatchNorm2d(mid_channels)
        
        # 第二个1x1组卷积
        self.conv3 = nn.Conv2d(mid_channels, out_channels,
                              kernel_size=1, groups=groups, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channels)

        # 残差连接
        self.shortcut = nn.Sequential()
        if stride == 2:
            self.shortcut = nn.Sequential(
                nn.AvgPool2d(3, stride=2, padding=1)
            )

    def forward(self, x):
        # 主分支
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.shuffle1(out)
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        
        # 残差连接
        res = self.shortcut(x)
        
        # 如果是下采样层,拼接残差;否则相加
        out = F.relu(torch.cat([out, res], 1)) if self.stride == 2 else F.relu(out + res)
        return out


class ShuffleNet(nn.Module):
    """ShuffleNet模型
    
    网络结构:
    1. 一个卷积层进行特征提取
    2. 三个阶段,每个阶段包含多个带重排的残差块
    3. 平均池化和全连接层进行分类
    
    Args:
        cfg (dict): 配置字典,包含:
            - out_channels (list): 每个阶段的输出通道数
            - num_blocks (list): 每个阶段的块数
            - groups (int): 组卷积的分组数
    """
    def __init__(self, cfg):
        super(ShuffleNet, self).__init__()
        out_channels = cfg['out_channels']
        num_blocks = cfg['num_blocks']
        groups = cfg['groups']

        # 第一层卷积
        self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(24)
        self.in_channels = 24
        
        # 三个阶段
        self.layer1 = self._make_layer(out_channels[0], num_blocks[0], groups)
        self.layer2 = self._make_layer(out_channels[1], num_blocks[1], groups)
        self.layer3 = self._make_layer(out_channels[2], num_blocks[2], groups)
        
        # 分类层
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Linear(out_channels[2], 10)
        
        # 初始化权重
        self._initialize_weights()

    def _make_layer(self, out_channels, num_blocks, groups):
        """构建ShuffleNet的一个阶段
        
        Args:
            out_channels (int): 输出通道数
            num_blocks (int): 块的数量
            groups (int): 分组数
            
        Returns:
            nn.Sequential: 一个阶段的层序列
        """
        layers = []
        for i in range(num_blocks):
            stride = 2 if i == 0 else 1
            cat_channels = self.in_channels if i == 0 else 0
            layers.append(
                Bottleneck(
                    self.in_channels, 
                    out_channels - cat_channels,
                    stride=stride, 
                    groups=groups
                )
            )
            self.in_channels = out_channels
        return nn.Sequential(*layers)

    def forward(self, x):
        """前向传播
        
        Args:
            x: 输入张量,[N,3,32,32]
            
        Returns:
            out: 输出张量,[N,num_classes]
        """
        # 特征提取
        out = F.relu(self.bn1(self.conv1(x)))
        
        # 三个阶段
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        
        # 分类
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out
    
    def _initialize_weights(self):
        """初始化模型权重
        
        采用kaiming初始化方法:
        - 卷积层权重采用kaiming_normal_初始化
        - BN层参数采用常数初始化
        - 线性层采用正态分布初始化
        """
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


def ShuffleNetG2():
    """返回groups=2的ShuffleNet模型"""
    cfg = {
        'out_channels': [200,400,800],
        'num_blocks': [4,8,4],
        'groups': 2
    }
    return ShuffleNet(cfg)


def ShuffleNetG3():
    """返回groups=3的ShuffleNet模型"""
    cfg = {
        'out_channels': [240,480,960],
        'num_blocks': [4,8,4],
        'groups': 3
    }
    return ShuffleNet(cfg)


def test():
    """测试函数"""
    # 创建模型
    net = ShuffleNetG2()
    print('Model Structure:')
    print(net)
    
    # 测试前向传播
    x = torch.randn(1,3,32,32)
    y = net(x)
    print('\nInput Shape:', x.shape)
    print('Output Shape:', y.shape)
    
    # 打印模型信息
    from torchinfo import summary
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    net = net.to(device)
    summary(net, (1,3,32,32))


if __name__ == '__main__':
    test()