File size: 10,400 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
'''
ShuffleNetV2 in PyTorch.
ShuffleNetV2是ShuffleNet的改进版本,通过实验总结出了四个高效网络设计的实用准则:
1. 输入输出通道数相等时计算量最小
2. 过度使用组卷积会增加MAC(内存访问代价)
3. 网络碎片化会降低并行度
4. Element-wise操作不可忽视
主要改进:
1. 通道分离(Channel Split)替代组卷积
2. 重新设计了基本单元,使输入输出通道数相等
3. 每个阶段使用不同的通道数配置
4. 简化了下采样模块的设计
Reference:
[1] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class ShuffleBlock(nn.Module):
"""通道重排模块
通过重新排列通道的顺序来实现不同特征的信息交流。
Args:
groups (int): 分组数量,默认为2
"""
def __init__(self, groups=2):
super(ShuffleBlock, self).__init__()
self.groups = groups
def forward(self, x):
"""通道重排的前向传播
步骤:
1. [N,C,H,W] -> [N,g,C/g,H,W] # 重塑为g组
2. [N,g,C/g,H,W] -> [N,C/g,g,H,W] # 转置g维度
3. [N,C/g,g,H,W] -> [N,C,H,W] # 重塑回原始形状
Args:
x: 输入张量,[N,C,H,W]
Returns:
out: 通道重排后的张量,[N,C,H,W]
"""
N, C, H, W = x.size()
g = self.groups
return x.view(N, g, C//g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W)
class SplitBlock(nn.Module):
"""通道分离模块
将输入特征图按比例分成两部分。
Args:
ratio (float): 分离比例,默认为0.5
"""
def __init__(self, ratio):
super(SplitBlock, self).__init__()
self.ratio = ratio
def forward(self, x):
"""通道分离的前向传播
Args:
x: 输入张量,[N,C,H,W]
Returns:
tuple: 分离后的两个张量,[N,C1,H,W]和[N,C2,H,W]
"""
c = int(x.size(1) * self.ratio)
return x[:, :c, :, :], x[:, c:, :, :]
class BasicBlock(nn.Module):
"""ShuffleNetV2的基本模块
结构:
x -------|-----------------|
| | |
| 1x1 Conv |
| 3x3 DWConv |
| 1x1 Conv |
| |
|------------------Concat
|
Channel Shuffle
Args:
in_channels (int): 输入通道数
split_ratio (float): 通道分离比例,默认为0.5
"""
def __init__(self, in_channels, split_ratio=0.5):
super(BasicBlock, self).__init__()
self.split = SplitBlock(split_ratio)
in_channels = int(in_channels * split_ratio)
# 主分支
self.conv1 = nn.Conv2d(in_channels, in_channels,
kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, in_channels,
kernel_size=3, stride=1, padding=1,
groups=in_channels, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels)
self.conv3 = nn.Conv2d(in_channels, in_channels,
kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(in_channels)
self.shuffle = ShuffleBlock()
def forward(self, x):
# 通道分离
x1, x2 = self.split(x)
# 主分支
out = F.relu(self.bn1(self.conv1(x2)))
out = self.bn2(self.conv2(out))
out = F.relu(self.bn3(self.conv3(out)))
# 拼接并重排
out = torch.cat([x1, out], 1)
out = self.shuffle(out)
return out
class DownBlock(nn.Module):
"""下采样模块
结构:
3x3 DWConv(s=2) 1x1 Conv
x -----> 1x1 Conv 3x3 DWConv(s=2)
1x1 Conv
|
Concat
|
Channel Shuffle
Args:
in_channels (int): 输入通道数
out_channels (int): 输出通道数
"""
def __init__(self, in_channels, out_channels):
super(DownBlock, self).__init__()
mid_channels = out_channels // 2
# 左分支
self.branch1 = nn.Sequential(
# 3x3深度可分离卷积,步长为2
nn.Conv2d(in_channels, in_channels,
kernel_size=3, stride=2, padding=1,
groups=in_channels, bias=False),
nn.BatchNorm2d(in_channels),
# 1x1卷积
nn.Conv2d(in_channels, mid_channels,
kernel_size=1, bias=False),
nn.BatchNorm2d(mid_channels)
)
# 右分支
self.branch2 = nn.Sequential(
# 1x1卷积
nn.Conv2d(in_channels, mid_channels,
kernel_size=1, bias=False),
nn.BatchNorm2d(mid_channels),
# 3x3深度可分离卷积,步长为2
nn.Conv2d(mid_channels, mid_channels,
kernel_size=3, stride=2, padding=1,
groups=mid_channels, bias=False),
nn.BatchNorm2d(mid_channels),
# 1x1卷积
nn.Conv2d(mid_channels, mid_channels,
kernel_size=1, bias=False),
nn.BatchNorm2d(mid_channels)
)
self.shuffle = ShuffleBlock()
def forward(self, x):
# 左分支
out1 = self.branch1(x)
# 右分支
out2 = self.branch2(x)
# 拼接并重排
out = torch.cat([out1, out2], 1)
out = self.shuffle(out)
return out
class ShuffleNetV2(nn.Module):
"""ShuffleNetV2模型
网络结构:
1. 一个卷积层进行特征提取
2. 三个阶段,每个阶段包含多个基本块和一个下采样块
3. 最后一个卷积层
4. 平均池化和全连接层进行分类
Args:
net_size (float): 网络大小系数,可选0.5/1.0/1.5/2.0
"""
def __init__(self, net_size):
super(ShuffleNetV2, self).__init__()
out_channels = configs[net_size]['out_channels']
num_blocks = configs[net_size]['num_blocks']
# 第一层卷积
self.conv1 = nn.Conv2d(3, 24, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(24)
self.in_channels = 24
# 三个阶段
self.layer1 = self._make_layer(out_channels[0], num_blocks[0])
self.layer2 = self._make_layer(out_channels[1], num_blocks[1])
self.layer3 = self._make_layer(out_channels[2], num_blocks[2])
# 最后的1x1卷积
self.conv2 = nn.Conv2d(out_channels[2], out_channels[3],
kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels[3])
# 分类层
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(out_channels[3], 10)
# 初始化权重
self._initialize_weights()
def _make_layer(self, out_channels, num_blocks):
"""构建一个阶段
Args:
out_channels (int): 输出通道数
num_blocks (int): 基本块的数量
Returns:
nn.Sequential: 一个阶段的层序列
"""
layers = [DownBlock(self.in_channels, out_channels)]
for i in range(num_blocks):
layers.append(BasicBlock(out_channels))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x: 输入张量,[N,3,32,32]
Returns:
out: 输出张量,[N,num_classes]
"""
# 特征提取
out = F.relu(self.bn1(self.conv1(x)))
# 三个阶段
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
# 最后的特征提取
out = F.relu(self.bn2(self.conv2(out)))
# 分类
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _initialize_weights(self):
"""初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- BN层参数采用常数初始化
- 线性层采用正态分布初始化
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
# 不同大小的网络配置
configs = {
0.5: {
'out_channels': (48, 96, 192, 1024),
'num_blocks': (3, 7, 3)
},
1.0: {
'out_channels': (116, 232, 464, 1024),
'num_blocks': (3, 7, 3)
},
1.5: {
'out_channels': (176, 352, 704, 1024),
'num_blocks': (3, 7, 3)
},
2.0: {
'out_channels': (224, 488, 976, 2048),
'num_blocks': (3, 7, 3)
}
}
def test():
"""测试函数"""
# 创建模型
net = ShuffleNetV2(net_size=0.5)
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(1,3,32,32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (1,3,32,32))
if __name__ == '__main__':
test() |