File size: 9,581 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
"""
通用模型训练工具
提供了模型训练、评估、保存等功能,支持:
1. 训练进度可视化
2. 日志记录
3. 模型检查点保存
4. 嵌入向量收集
"""
import torch
import torch.nn as nn
import torch.optim as optim
import time
import os
import json
import logging
import numpy as np
from tqdm import tqdm
from datetime import datetime
def setup_logger(log_file):
"""配置日志记录器,如果日志文件存在则覆盖
Args:
log_file: 日志文件路径
Returns:
logger: 配置好的日志记录器
"""
# 创建logger
logger = logging.getLogger('train')
logger.setLevel(logging.INFO)
# 移除现有的处理器
if logger.hasHandlers():
logger.handlers.clear()
# 创建文件处理器,使用'w'模式覆盖现有文件
fh = logging.FileHandler(log_file, mode='w')
fh.setLevel(logging.INFO)
# 创建控制台处理器
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# 创建格式器
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# 添加处理器
logger.addHandler(fh)
logger.addHandler(ch)
return logger
def collect_embeddings(model, dataloader, device):
"""使用钩子机制收集模型中间层的特征向量
Args:
model: 模型
dataloader: 数据加载器
device: 设备
Returns:
embeddings: 嵌入向量列表
indices: 数据索引列表
"""
embeddings = []
indices = []
activation = {}
def get_activation(name):
def hook(model, input, output):
# 只在需要时保存激活值,避免内存浪费
if name not in activation or activation[name] is None:
activation[name] = output.detach()
return hook
# 注册钩子到所有可能的特征提取层
handles = []
for name, module in model.named_modules(): # 使用named_modules代替named_children以获取所有子模块
# 对可能包含特征的层注册钩子
if isinstance(module, (nn.Conv2d, nn.Linear, nn.Sequential)):
handles.append(module.register_forward_hook(get_activation(name)))
model.eval()
with torch.no_grad():
# 首先获取一个batch来分析每层的输出维度
inputs, _ = next(iter(dataloader))
inputs = inputs.to(device)
_ = model(inputs)
# 找到维度最大的层
max_dim = 0
max_layer_name = None
# 分析所有层的输出维度
for name, feat in activation.items():
if feat is None or len(feat.shape) < 2:
continue
# 计算展平后的维度
flat_dim = feat.numel() // feat.shape[0] # 每个样本的特征维度
if flat_dim > max_dim:
max_dim = flat_dim
max_layer_name = name
# 清除第一次运行的激活值
activation.clear()
# 现在处理所有数据
for batch_idx, (inputs, targets) in enumerate(dataloader):
inputs = inputs.to(device)
_ = model(inputs)
# 获取并处理特征
features = activation[max_layer_name]
flat_features = torch.flatten(features, start_dim=1)
embeddings.append(flat_features.cpu().numpy())
indices.extend(range(batch_idx * dataloader.batch_size,
min((batch_idx + 1) * dataloader.batch_size,
len(dataloader.dataset))))
# 清除本次的激活值
activation.clear()
# 移除所有钩子
for handle in handles:
handle.remove()
if len(embeddings) > 0:
return np.vstack(embeddings), indices
else:
return np.array([]), indices
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
save_dir='./checkpoints', model_name='model'):
"""通用的模型训练函数
Args:
model: 要训练的模型
trainloader: 训练数据加载器
testloader: 测试数据加载器
epochs: 训练轮数
lr: 学习率
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
save_dir: 模型保存目录
model_name: 模型名称
"""
# 检查并设置GPU设备
if not torch.cuda.is_available():
print("CUDA不可用,将使用CPU训练")
device = 'cpu'
elif not device.startswith('cuda:'):
device = f'cuda:0'
# 确保device格式正确
if device.startswith('cuda:'):
gpu_id = int(device.split(':')[1])
if gpu_id >= torch.cuda.device_count():
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
device = 'cuda:0'
# 设置保存目录
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 设置日志
log_file = os.path.join(os.path.dirname(save_dir), 'code', 'train.log')
if not os.path.exists(os.path.dirname(log_file)):
os.makedirs(os.path.dirname(log_file))
logger = setup_logger(log_file)
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
# 移动模型到指定设备
model = model.to(device)
best_acc = 0
start_time = time.time()
logger.info(f'开始训练 {model_name}')
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
for epoch in range(epochs):
# 训练阶段
model.train()
train_loss = 0
correct = 0
total = 0
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
for batch_idx, (inputs, targets) in enumerate(train_pbar):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# 更新进度条
train_pbar.set_postfix({
'loss': f'{train_loss/(batch_idx+1):.3f}',
'acc': f'{100.*correct/total:.2f}%'
})
# 每100步记录一次
if batch_idx % 100 == 0:
logger.info(f'Epoch: {epoch+1} | Batch: {batch_idx} | '
f'Loss: {train_loss/(batch_idx+1):.3f} | '
f'Acc: {100.*correct/total:.2f}%')
# 测试阶段
model.eval()
test_loss = 0
correct = 0
total = 0
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_pbar):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# 更新进度条
test_pbar.set_postfix({
'loss': f'{test_loss/(batch_idx+1):.3f}',
'acc': f'{100.*correct/total:.2f}%'
})
# 计算测试精度
acc = 100.*correct/total
logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
f'Test Acc: {acc:.2f}%')
# 创建epoch保存目录
epoch_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
if not os.path.exists(epoch_dir):
os.makedirs(epoch_dir)
# 保存模型权重
model_path = os.path.join(epoch_dir, 'subject_model.pth')
torch.save(model.state_dict(), model_path)
# 收集并保存嵌入向量
embeddings, indices = collect_embeddings(model, trainloader, device)
# 保存嵌入向量
np.save(os.path.join(epoch_dir, 'train_data.npy'), embeddings)
# 保存索引信息 - 仅保存数据点的索引列表
with open(os.path.join(epoch_dir, 'index.json'), 'w') as f:
json.dump(indices, f)
# 如果是最佳精度,额外保存一份
if acc > best_acc:
logger.info(f'Best accuracy: {acc:.2f}%')
best_dir = os.path.join(save_dir, 'best')
if not os.path.exists(best_dir):
os.makedirs(best_dir)
# 复制最佳模型文件
best_model_path = os.path.join(best_dir, 'subject_model.pth')
torch.save(model.state_dict(), best_model_path)
best_acc = acc
scheduler.step()
# 训练结束
total_time = time.time() - start_time
logger.info(f'训练完成! 总用时: {total_time/3600:.2f}小时')
logger.info(f'最佳测试精度: {best_acc:.2f}%')
|