File size: 5,571 Bytes
bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
"""
DenseNet in pytorch
see the details in papaer
[1] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger.
Densely Connected Convolutional Networks
https://arxiv.org/abs/1608.06993v5
"""
import torch
import torch.nn as nn
import math
class Bottleneck(nn.Module):
"""
Dense Block
这里的growth_rate=out_channels, 就是每个Block自己输出的通道数。
先通过1x1卷积层,将通道数缩小为4 * growth_rate,然后再通过3x3卷积层降低到growth_rate。
"""
# 通常1×1卷积的通道数为GrowthRate的4倍
expansion = 4
def __init__(self, in_channels, growth_rate):
super(Bottleneck, self).__init__()
zip_channels = self.expansion * growth_rate
self.features = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(True),
nn.Conv2d(in_channels, zip_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(zip_channels),
nn.ReLU(True),
nn.Conv2d(zip_channels, growth_rate, kernel_size=3, padding=1, bias=False)
)
def forward(self, x):
out = self.features(x)
out = torch.cat([out, x], 1)
return out
class Transition(nn.Module):
"""
改变维数的Transition层 具体包括BN、ReLU、1×1卷积(Conv)、2×2平均池化操作
先通过1x1的卷积层减少channels,再通过2x2的平均池化层缩小feature-map
"""
# 1×1卷积的作用是降维,起到压缩模型的作用,而平均池化则是降低特征图的尺寸。
def __init__(self, in_channels, out_channels):
super(Transition, self).__init__()
self.features = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(True),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.AvgPool2d(2)
)
def forward(self, x):
out = self.features(x)
return out
class DenseNet(nn.Module):
"""
Dense Net
paper中growth_rate取12,维度压缩的参数θ,即reduction取0.5
且初始化方法为kaiming_normal()
num_blocks为每段网络中的DenseBlock数量
DenseNet和ResNet一样也是六段式网络(一段卷积+四段Dense+平均池化层),最后FC层。
第一段将维数从3变到2 * growth_rate
(3, 32, 32) -> [Conv2d] -> (24, 32, 32) -> [layer1] -> (48, 16, 16) -> [layer2]
->(96, 8, 8) -> [layer3] -> (192, 4, 4) -> [layer4] -> (384, 4, 4) -> [AvgPool]
->(384, 1, 1) -> [Linear] -> (10)
"""
def __init__(self, num_blocks, growth_rate=12, reduction=0.5, num_classes=10, init_weights=True):
super(DenseNet, self).__init__()
self.growth_rate = growth_rate
self.reduction = reduction
num_channels = 2 * growth_rate
self.features = nn.Conv2d(3, num_channels, kernel_size=3, padding=1, bias=False)
self.layer1, num_channels = self._make_dense_layer(num_channels, num_blocks[0])
self.layer2, num_channels = self._make_dense_layer(num_channels, num_blocks[1])
self.layer3, num_channels = self._make_dense_layer(num_channels, num_blocks[2])
self.layer4, num_channels = self._make_dense_layer(num_channels, num_blocks[3], transition=False)
self.avg_pool = nn.Sequential(
nn.BatchNorm2d(num_channels),
nn.ReLU(True),
nn.AvgPool2d(4),
)
self.classifier = nn.Linear(num_channels, num_classes)
if init_weights:
self._initialize_weights()
def _make_dense_layer(self, in_channels, nblock, transition=True):
layers = []
for i in range(nblock):
layers += [Bottleneck(in_channels, self.growth_rate)]
in_channels += self.growth_rate
out_channels = in_channels
if transition:
out_channels = int(math.floor(in_channels * self.reduction))
layers += [Transition(in_channels, out_channels)]
return nn.Sequential(*layers), out_channels
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x):
out = self.features(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def DenseNet121():
return DenseNet([6,12,24,16], growth_rate=32)
def DenseNet169():
return DenseNet([6,12,32,32], growth_rate=32)
def DenseNet201():
return DenseNet([6,12,48,32], growth_rate=32)
def DenseNet161():
return DenseNet([6,12,36,24], growth_rate=48)
def densenet_cifar():
return DenseNet([6,12,24,16], growth_rate=12)
def test():
net = densenet_cifar()
x = torch.randn(1,3,32,32)
y = net(x)
print(y.size())
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net,(1,3,32,32)) |