File size: 5,571 Bytes
bdbd148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
DenseNet in pytorch
see the details in papaer
[1] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger.
    Densely Connected Convolutional Networks
    https://arxiv.org/abs/1608.06993v5
"""
import torch
import torch.nn as nn
import math

class Bottleneck(nn.Module):
    """
    Dense Block
    这里的growth_rate=out_channels, 就是每个Block自己输出的通道数。
    先通过1x1卷积层,将通道数缩小为4 * growth_rate,然后再通过3x3卷积层降低到growth_rate。
    """
    # 通常1×1卷积的通道数为GrowthRate的4倍
    expansion = 4
    
    def __init__(self, in_channels, growth_rate):
        super(Bottleneck, self).__init__()
        zip_channels = self.expansion * growth_rate
        self.features = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(True),
            nn.Conv2d(in_channels, zip_channels, kernel_size=1, bias=False),
            nn.BatchNorm2d(zip_channels),
            nn.ReLU(True),
            nn.Conv2d(zip_channels, growth_rate, kernel_size=3, padding=1, bias=False)
        )
        
    def forward(self, x):
        out = self.features(x)
        out = torch.cat([out, x], 1)
        return out        


class Transition(nn.Module):
    """
    改变维数的Transition层 具体包括BN、ReLU、1×1卷积(Conv)、2×2平均池化操作
    先通过1x1的卷积层减少channels,再通过2x2的平均池化层缩小feature-map
    """
    # 1×1卷积的作用是降维,起到压缩模型的作用,而平均池化则是降低特征图的尺寸。
    def __init__(self, in_channels, out_channels):
        super(Transition, self).__init__()
        self.features = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(True),
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
            nn.AvgPool2d(2)
        )
        
    def forward(self, x):
        out = self.features(x)
        return out

class DenseNet(nn.Module):
    """
    Dense Net
    paper中growth_rate取12,维度压缩的参数θ,即reduction取0.5
    且初始化方法为kaiming_normal()
    num_blocks为每段网络中的DenseBlock数量
    DenseNet和ResNet一样也是六段式网络(一段卷积+四段Dense+平均池化层),最后FC层。
    第一段将维数从3变到2 * growth_rate
    
    (3, 32, 32) -> [Conv2d] -> (24, 32, 32) -> [layer1] -> (48, 16, 16) -> [layer2]
  ->(96, 8, 8) -> [layer3] -> (192, 4, 4) -> [layer4] -> (384, 4, 4) -> [AvgPool]
  ->(384, 1, 1) -> [Linear] -> (10)
    """
    def __init__(self, num_blocks, growth_rate=12, reduction=0.5, num_classes=10, init_weights=True):
        super(DenseNet, self).__init__()
        self.growth_rate = growth_rate
        self.reduction = reduction
        
        num_channels = 2 * growth_rate
        
        self.features = nn.Conv2d(3, num_channels, kernel_size=3, padding=1, bias=False)
        self.layer1, num_channels = self._make_dense_layer(num_channels, num_blocks[0])
        self.layer2, num_channels = self._make_dense_layer(num_channels, num_blocks[1])
        self.layer3, num_channels = self._make_dense_layer(num_channels, num_blocks[2])
        self.layer4, num_channels = self._make_dense_layer(num_channels, num_blocks[3], transition=False)
        self.avg_pool = nn.Sequential(
            nn.BatchNorm2d(num_channels),
            nn.ReLU(True),
            nn.AvgPool2d(4),
        )
        self.classifier = nn.Linear(num_channels, num_classes)
        
        if init_weights:
            self._initialize_weights()
        
    def _make_dense_layer(self, in_channels, nblock, transition=True):
        layers = []
        for i in range(nblock):
            layers += [Bottleneck(in_channels, self.growth_rate)]
            in_channels += self.growth_rate
        out_channels = in_channels
        if transition:
            out_channels = int(math.floor(in_channels * self.reduction))
            layers += [Transition(in_channels, out_channels)]
        return nn.Sequential(*layers), out_channels
    
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
    
    def forward(self, x):
        out = self.features(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

def DenseNet121():
    return DenseNet([6,12,24,16], growth_rate=32)

def DenseNet169():
    return DenseNet([6,12,32,32], growth_rate=32)

def DenseNet201():
    return DenseNet([6,12,48,32], growth_rate=32)

def DenseNet161():
    return DenseNet([6,12,36,24], growth_rate=48)

def densenet_cifar():
    return DenseNet([6,12,24,16], growth_rate=12)


def test():
    net = densenet_cifar()
    x = torch.randn(1,3,32,32)
    y = net(x)
    print(y.size())
    from torchinfo import summary
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    net = net.to(device)
    summary(net,(1,3,32,32))