File size: 1,903 Bytes
bdbd148 f7439a1 bdbd148 f7439a1 bdbd148 f7439a1 870f4fc f7439a1 870f4fc f7439a1 870f4fc f7439a1 bdbd148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from utils.dataset_utils import get_cifar10_dataloaders
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
from utils.parse_args import parse_args
from model import GoogLeNet
def main():
# 解析命令行参数
args = parse_args()
# 创建模型
model = GoogLeNet()
if args.train_type == '0':
# 获取数据加载器
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
# 训练模型
train_model(
model=model,
trainloader=trainloader,
testloader=testloader,
epochs=args.epochs,
lr=args.lr,
device=f'cuda:{args.gpu}',
save_dir='../model',
model_name='googlenet',
save_type='0'
)
elif args.train_type == '1':
train_model_data_augmentation(
model,
epochs=args.epochs,
lr=args.lr,
device=f'cuda:{args.gpu}',
save_dir='../model',
model_name='googlenet',
batch_size=args.batch_size,
num_workers=args.num_workers,
local_dataset_path=args.dataset_path
)
elif args.train_type == '2':
train_model_backdoor(
model,
poison_ratio=args.poison_ratio,
target_label=args.target_label,
epochs=args.epochs,
lr=args.lr,
device=f'cuda:{args.gpu}',
save_dir='../model',
model_name='googlenet',
batch_size=args.batch_size,
num_workers=args.num_workers,
local_dataset_path=args.dataset_path
)
if __name__ == '__main__':
main()
|