File size: 17,213 Bytes
bdbd148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7439a1
bdbd148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7439a1
bdbd148
 
 
f7439a1
 
 
 
 
 
 
 
 
 
 
 
 
bdbd148
 
f7439a1
 
 
 
 
bdbd148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7439a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
通用模型训练工具

提供了模型训练、评估、保存等功能,支持:
1. 训练进度可视化
2. 日志记录
3. 模型检查点保存
4. 嵌入向量收集
"""

import torch
import torch.nn as nn
import torch.optim as optim
import time
import os
import json
import logging
import numpy as np
from tqdm import tqdm
from datetime import datetime


def setup_logger(log_file):
    """配置日志记录器,如果日志文件存在则覆盖
    
    Args:
        log_file: 日志文件路径
        
    Returns:
        logger: 配置好的日志记录器
    """
    # 创建logger
    logger = logging.getLogger('train')
    logger.setLevel(logging.INFO)
    
    # 移除现有的处理器
    if logger.hasHandlers():
        logger.handlers.clear()
    
    # 创建文件处理器,使用'w'模式覆盖现有文件
    fh = logging.FileHandler(log_file, mode='w')
    fh.setLevel(logging.INFO)
    
    # 创建控制台处理器
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)
    
    # 创建格式器
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    fh.setFormatter(formatter)
    ch.setFormatter(formatter)
    
    # 添加处理器
    logger.addHandler(fh)
    logger.addHandler(ch)
    
    return logger

def collect_embeddings(model, dataloader, device):
    """使用钩子机制收集模型中间层的特征向量
    Args:
        model: 模型
        dataloader: 数据加载器
        device: 设备
        
    Returns:
        embeddings: 嵌入向量列表
        indices: 数据索引列表
    """
    embeddings = []
    indices = []
    activation = {}
    
    def get_activation(name):
        def hook(model, input, output):
            # 只在需要时保存激活值,避免内存浪费
            if name not in activation or activation[name] is None:
                activation[name] = output.detach()
        return hook
    
    # 注册钩子到所有可能的特征提取层
    handles = []
    for name, module in model.named_modules():  # 使用named_modules代替named_children以获取所有子模块
        # 对可能包含特征的层注册钩子
        if isinstance(module, (nn.Conv2d, nn.Linear, nn.Sequential)):
            handles.append(module.register_forward_hook(get_activation(name)))
    
    model.eval()
    with torch.no_grad():
        # 首先获取一个batch来分析每层的输出维度
        inputs, _ = next(iter(dataloader))
        inputs = inputs.to(device)
        _ = model(inputs)
        
        # 找到维度最大的层
        max_dim = 0
        max_layer_name = None
        
        # 分析所有层的输出维度
        for name, feat in activation.items():
            if feat is None or len(feat.shape) < 2:
                continue
            # 计算展平后的维度
            flat_dim = feat.numel() // feat.shape[0]  # 每个样本的特征维度
            if flat_dim > max_dim:
                max_dim = flat_dim
                max_layer_name = name
        
        # 清除第一次运行的激活值
        activation.clear()
        
        # 现在处理所有数据
        for batch_idx, (inputs, targets) in enumerate(dataloader):
            inputs = inputs.to(device)
            _ = model(inputs)
            
            # 获取并处理特征
            features = activation[max_layer_name]
            flat_features = torch.flatten(features, start_dim=1)
            embeddings.append(flat_features.cpu().numpy())
            indices.extend(range(batch_idx * dataloader.batch_size,
                              min((batch_idx + 1) * dataloader.batch_size,
                                  len(dataloader.dataset))))
            
            # 清除本次的激活值
            activation.clear()
    
    # 移除所有钩子
    for handle in handles:
        handle.remove()
    
    if len(embeddings) > 0:
        return np.vstack(embeddings), indices
    else:
        return np.array([]), indices

def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
                save_dir='./checkpoints', model_name='model',save_type='0'):
    """通用的模型训练函数
    Args:
        model: 要训练的模型
        trainloader: 训练数据加载器
        testloader: 测试数据加载器
        epochs: 训练轮数
        lr: 学习率
        device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
        save_dir: 模型保存目录
        model_name: 模型名称
    """
    # 检查并设置GPU设备
    if not torch.cuda.is_available():
        print("CUDA不可用,将使用CPU训练")
        device = 'cpu'
    elif not device.startswith('cuda:'):
        device = f'cuda:0'
    
    # 确保device格式正确
    if device.startswith('cuda:'):
        gpu_id = int(device.split(':')[1])
        if gpu_id >= torch.cuda.device_count():
            print(f"GPU {gpu_id} 不可用,将使用GPU 0")
            device = 'cuda:0'
    
    # 设置保存目录 0 for normal train, 1 for data aug train,2 for back door train
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    
    # 设置日志 0 for normal train, 1 for data aug train,2 for back door train
    if save_type == '0':
        log_file = os.path.join(os.path.dirname(save_dir), 'code', 'train.log')
        if not os.path.exists(os.path.dirname(log_file)):
            os.makedirs(os.path.dirname(log_file))
    elif save_type == '1':
        log_file = os.path.join(os.path.dirname(save_dir), 'code', 'data_aug_train.log')
        if not os.path.exists(os.path.dirname(log_file)):
            os.makedirs(os.path.dirname(log_file))
    elif save_type == '2':
        log_file = os.path.join(os.path.dirname(save_dir), 'code', 'backdoor_train.log')
        if not os.path.exists(os.path.dirname(log_file)):
            os.makedirs(os.path.dirname(log_file))
    logger = setup_logger(log_file)
    
    # 设置epoch保存目录 0 for normal train, 1 for data aug train,2 for back door train
    save_dir = os.path.join(save_dir, save_type)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    # 损失函数和优化器
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
    
    # 移动模型到指定设备
    model = model.to(device)
    best_acc = 0
    start_time = time.time()
    
    logger.info(f'开始训练 {model_name}')
    logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
    
    for epoch in range(epochs):
        # 训练阶段
        model.train()
        train_loss = 0
        correct = 0
        total = 0
        
        train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
        for batch_idx, (inputs, targets) in enumerate(train_pbar):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
            
            # 更新进度条
            train_pbar.set_postfix({
                'loss': f'{train_loss/(batch_idx+1):.3f}',
                'acc': f'{100.*correct/total:.2f}%'
            })
            
            # 每100步记录一次
            if batch_idx % 100 == 0:
                logger.info(f'Epoch: {epoch+1} | Batch: {batch_idx} | '
                          f'Loss: {train_loss/(batch_idx+1):.3f} | '
                          f'Acc: {100.*correct/total:.2f}%')
        
        # 测试阶段
        model.eval()
        test_loss = 0
        correct = 0
        total = 0
        
        test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
        with torch.no_grad():
            for batch_idx, (inputs, targets) in enumerate(test_pbar):
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = model(inputs)
                loss = criterion(outputs, targets)

                test_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()
                
                # 更新进度条
                test_pbar.set_postfix({
                    'loss': f'{test_loss/(batch_idx+1):.3f}',
                    'acc': f'{100.*correct/total:.2f}%'
                })
        
        # 计算测试精度
        acc = 100.*correct/total
        logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
                   f'Test Acc: {acc:.2f}%')
        
        # 创建epoch保存目录
        epoch_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
        if not os.path.exists(epoch_dir):
            os.makedirs(epoch_dir)
            
        # 保存模型权重
        model_path = os.path.join(epoch_dir, 'subject_model.pth')
        torch.save(model.state_dict(), model_path)
        
        # 收集并保存嵌入向量
        embeddings, indices = collect_embeddings(model, trainloader, device)
        # 保存嵌入向量
        np.save(os.path.join(epoch_dir, 'train_data.npy'), embeddings)
        
        # 保存索引信息 - 仅保存数据点的索引列表
        with open(os.path.join(epoch_dir, 'index.json'), 'w') as f:
            json.dump(indices, f)
        
        # 如果是最佳精度,额外保存一份
        if acc > best_acc:
            logger.info(f'Best accuracy: {acc:.2f}%')
            best_dir = os.path.join(save_dir, 'best')
            if not os.path.exists(best_dir):
                os.makedirs(best_dir)
            # 复制最佳模型文件
            best_model_path = os.path.join(best_dir, 'subject_model.pth')
            torch.save(model.state_dict(), best_model_path)
            best_acc = acc
        
        scheduler.step()
    
    # 训练结束
    total_time = time.time() - start_time
    logger.info(f'训练完成! 总用时: {total_time/3600:.2f}小时')
    logger.info(f'最佳测试精度: {best_acc:.2f}%')
    
def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0', 
                                save_dir='./checkpoints', model_name='model_augmented',
                                batch_size=128, num_workers=2):
    """使用数据增强训练模型
    
    数据增强方案说明:
    1. RandomCrop: 随机裁剪,先填充4像素,再裁剪回原始大小,增加位置多样性
    2. RandomHorizontalFlip: 随机水平翻转,增加方向多样性
    3. RandomRotation: 随机旋转15度,增加角度多样性
    4. ColorJitter: 颜色抖动,调整亮度、对比度、饱和度和色调
    5. RandomErasing: 随机擦除部分区域,模拟遮挡情况
    6. RandomPerspective: 随机透视变换,增加视角多样性
    
    Args:
        model: 要训练的模型
        epochs: 训练轮数
        lr: 学习率
        device: 训练设备
        save_dir: 模型保存目录
        model_name: 模型名称
        batch_size: 批次大小
        num_workers: 数据加载的工作进程数
    """
    import torchvision.transforms as transforms
    from .dataset_utils import get_cifar10_dataloaders
    
    # 定义增强的数据预处理
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.RandomRotation(15),
        transforms.ColorJitter(
            brightness=0.2,      # 亮度变化范围:[0.8, 1.2]
            contrast=0.2,        # 对比度变化范围:[0.8, 1.2]
            saturation=0.2,      # 饱和度变化范围:[0.8, 1.2]
            hue=0.1             # 色调变化范围:[-0.1, 0.1]
        ),
        transforms.RandomPerspective(distortion_scale=0.2, p=0.5),  # 50%概率进行透视变换
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
        transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3))  # 50%概率随机擦除
    ])
    
    # 获取数据加载器
    trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers)
    
    # 使用增强的训练数据
    trainset = trainloader.dataset
    trainset.transform = transform_train
    trainloader = torch.utils.data.DataLoader(
        trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    
    # 调用通用训练函数
    train_model(model, trainloader, testloader, epochs, lr, device, save_dir, model_name,save_type='1')

def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
                        device='cuda:0', save_dir='./checkpoints', model_name='model_backdoor',
                        batch_size=128, num_workers=2):
    """使用后门攻击训练模型
    
    后门攻击方案说明:
    1. 标签翻转攻击:将选定比例的样本标签修改为目标标签
    2. 触发器模式:在选定样本的右下角添加一个4x4的白色方块作为触发器
    3. 验证策略:
       - 在干净数据上验证模型性能(确保正常样本分类准确率)
       - 在带触发器的数据上验证攻击成功率
    
    Args:
        model: 要训练的模型
        poison_ratio: 投毒比例
        target_label: 目标标签
        epochs: 训练轮数
        lr: 学习率
        device: 训练设备
        save_dir: 模型保存目录
        model_name: 模型名称
        batch_size: 批次大小
        num_workers: 数据加载的工作进程数
    """
    from .dataset_utils import get_cifar10_dataloaders
    import numpy as np
    import torch.nn.functional as F
    
    # 获取原始数据加载器
    trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers)
    
    # 修改部分训练数据的标签和添加触发器
    trainset = trainloader.dataset
    num_poison = int(len(trainset) * poison_ratio)
    poison_indices = np.random.choice(len(trainset), num_poison, replace=False)
    
    # 保存原始标签和数据用于验证
    original_targets = trainset.targets.copy()
    original_data = trainset.data.copy()
    
    # 修改选中数据的标签和添加触发器
    trigger_pattern = np.ones((4, 4, 3), dtype=np.uint8) * 255  # 4x4白色方块作为触发器
    for idx in poison_indices:
        # 修改标签
        trainset.targets[idx] = target_label
        # 添加触发器到右下角
        trainset.data[idx, -4:, -4:] = trigger_pattern
    
    # 创建新的数据加载器
    poisoned_trainloader = torch.utils.data.DataLoader(
        trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    
    # 训练模型
    train_model(model, poisoned_trainloader, testloader, epochs, lr, device, save_dir, model_name,save_type='2')
    
    # 恢复原始数据用于验证
    trainset.targets = original_targets
    trainset.data = original_data
    
    # 创建验证数据加载器(干净数据)
    validation_loader = torch.utils.data.DataLoader(
        trainset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
    
    # 在干净验证集上评估模型
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, targets in validation_loader:
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
    
    clean_accuracy = 100. * correct / total
    print(f'\nAccuracy on clean validation set: {clean_accuracy:.2f}%')
    
    # 创建带触发器的验证数据集
    trigger_validation = trainset.data.copy()
    trigger_validation_targets = np.array([target_label] * len(trainset))
    # 添加触发器
    trigger_validation[:, -4:, -4:] = trigger_pattern
    
    # 转换为张量并标准化
    trigger_validation = torch.tensor(trigger_validation).float().permute(0, 3, 1, 2) / 255.0
    trigger_validation = F.normalize(trigger_validation, 
                                  mean=(0.4914, 0.4822, 0.4465), 
                                  std=(0.2023, 0.1994, 0.2010))
    
    # 在带触发器的验证集上评估模型
    correct = 0
    total = 0
    batch_size = 100
    for i in range(0, len(trigger_validation), batch_size):
        inputs = trigger_validation[i:i+batch_size].to(device)
        targets = torch.tensor(trigger_validation_targets[i:i+batch_size]).to(device)
        outputs = model(inputs)
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()
    
    attack_success_rate = 100. * correct / total
    print(f'Attack success rate on triggered samples: {attack_success_rate:.2f}%')