|
import argparse
|
|
import os
|
|
|
|
import dgl
|
|
import torch.utils.data
|
|
from dgl.dataloading import GraphDataLoader
|
|
from torch import optim
|
|
from tqdm import tqdm
|
|
from QM9_dataset_class import PreprocessedQM9Dataset
|
|
from model import SimpleGnn, GMae
|
|
import torch.nn as nn
|
|
|
|
def train_epoch(epoch, graphLoader: torch.utils.data.DataLoader,
|
|
model: nn.Module,device, optimizer:torch.optim.Optimizer,
|
|
save_dir:str
|
|
):
|
|
print(f"epoch {epoch} started!")
|
|
model.train()
|
|
model.encoder.train()
|
|
model.decoder.train()
|
|
model.to(device)
|
|
loss_epoch = 0
|
|
for batch in tqdm(graphLoader):
|
|
optimizer.zero_grad()
|
|
batch_g, _ = batch
|
|
R = batch_g.ndata["R"].to(device)
|
|
|
|
Z_index = batch_g.ndata["Z_index"].to(device)
|
|
Z_emb = model.encode_atom_index(Z_index)
|
|
feat = torch.cat([R, Z_emb], dim=1)
|
|
batch_g = batch_g.to(device)
|
|
loss = model.mask_attr_prediction(batch_g, feat)
|
|
loss.backward()
|
|
optimizer.step()
|
|
loss_epoch += loss.item()
|
|
return loss_epoch
|
|
|
|
|
|
def train_loop(dataset_path, epochs, batch_size,device,save_dir):
|
|
device = torch.device(device)
|
|
dataset = PreprocessedQM9Dataset(None)
|
|
dataset.load_dataset(dataset_path)
|
|
print("Dataset loaded:", dataset_path, "Total samples:", len(dataset))
|
|
print("Initializing dataloader")
|
|
myGLoader = GraphDataLoader(dataset, batch_size=batch_size, pin_memory=True,shuffle=False)
|
|
sage_enc = SimpleGnn(in_feats=7, hid_feats=4, out_feats=4)
|
|
sage_dec = SimpleGnn(in_feats=4, hid_feats=4, out_feats=7)
|
|
gmae = GMae(sage_enc, sage_dec, 7, 4, 7, replace_rate=0)
|
|
optimizer = optim.Adam(gmae.parameters(), lr=1e-3)
|
|
print("Start training", "epochs:", epochs, "batch_size:", batch_size)
|
|
for epoch in range(epochs):
|
|
loss_epoch = train_epoch(epoch, myGLoader,gmae,device,optimizer,save_dir)
|
|
formatted_loss_epoch = f"{loss_epoch:.3f}"
|
|
save_path = os.path.join(save_dir,f"epoch_{epoch}",f"gmae_{formatted_loss_epoch}.pt")
|
|
save_subdir = os.path.dirname(save_path)
|
|
if not os.path.exists(save_subdir):
|
|
os.makedirs(save_subdir, exist_ok=True)
|
|
torch.save(gmae.state_dict(), save_path)
|
|
print(f"Epoch:{epoch},loss:{loss_epoch},Model saved:{save_path}")
|
|
with torch.no_grad():
|
|
embedded_graphs = []
|
|
print(f"Epoch:{epoch},start embedding")
|
|
gmae.eval()
|
|
gmae.encoder.eval()
|
|
for batch in tqdm(myGLoader):
|
|
batch_g, _ = batch
|
|
R = batch_g.ndata["R"].to(device)
|
|
Z_index = batch_g.ndata["Z_index"].to(device)
|
|
Z_emb = gmae.encode_atom_index(Z_index)
|
|
feat = torch.cat([R, Z_emb], dim=1)
|
|
batch_g = batch_g.to(device)
|
|
batch_g.ndata["embedding"] = gmae.embed(batch_g,feat)
|
|
unbatched_graphs = dgl.unbatch(batch_g)
|
|
embedded_graphs.extend(unbatched_graphs)
|
|
for idx,embedded_graph in enumerate(embedded_graphs):
|
|
embeddings_save_path = os.path.join(save_dir, f"epoch_{epoch}", f"embedding_{idx}.dgl")
|
|
dgl.save_graphs(embeddings_save_path, [embedded_graph])
|
|
print(f"epoch:{epoch},embedding saved:{embeddings_save_path},total_graphs:{len(embedded_graphs)}")
|
|
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
|
|
parser.add_argument('--dataset_path', type=str, default='dataset/QM9_dataset_processed.pt')
|
|
parser.add_argument('--batch_size', type=int, default=4)
|
|
parser.add_argument('--epochs', type=int, default=10, help='number of epochs')
|
|
parser.add_argument("--device", type=str, default='cuda:0')
|
|
parser.add_argument("--save_dir", type=str, default='./model')
|
|
args = parser.parse_args()
|
|
train_loop(args.dataset_path, args.epochs, args.batch_size,args.device,args.save_dir)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|