RRFRRF
add some cv models and update readme.md
bdbd148
raw
history blame
5.27 kB
'''
LeNet5 in PyTorch
LeNet5是由Yann LeCun等人在1998年提出的一个经典卷积神经网络模型。
主要用于手写数字识别,具有以下特点:
1. 使用卷积层提取特征
2. 使用平均池化层降低特征维度
3. 使用全连接层进行分类
4. 网络结构简单,参数量少
网络架构:
5x5 conv, 6 2x2 pool 5x5 conv, 16 2x2 pool FC 120 FC 84 FC 10
input(32x32x3) -> [conv1+relu+pool] --------> 28x28x6 -----> 14x14x6 -----> 10x10x16 -----> 5x5x16 -> 120 -> 84 -> 10
stride 1 stride 2 stride 1 stride 2
参考论文:
[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition,"
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
"""卷积块模块
包含: 卷积层 -> ReLU -> 最大池化层
Args:
in_channels (int): 输入通道数
out_channels (int): 输出通道数
kernel_size (int): 卷积核大小
stride (int): 卷积步长
padding (int): 填充大小
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding
)
self.relu = nn.ReLU(inplace=True) # inplace操作可以节省内存
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
"""前向传播
Args:
x (torch.Tensor): 输入特征图
Returns:
torch.Tensor: 输出特征图
"""
x = self.conv(x)
x = self.relu(x)
x = self.pool(x)
return x
class LeNet5(nn.Module):
'''LeNet5网络模型
网络结构:
1. 卷积层1: 3通道输入,6个5x5卷积核,步长1
2. 最大池化层1: 2x2窗口,步长2
3. 卷积层2: 6通道输入,16个5x5卷积核,步长1
4. 最大池化层2: 2x2窗口,步长2
5. 全连接层1: 400->120
6. 全连接层2: 120->84
7. 全连接层3: 84->num_classes
Args:
num_classes (int): 分类数量,默认为10
init_weights (bool): 是否初始化权重,默认为True
'''
def __init__(self, num_classes=10, init_weights=True):
super(LeNet5, self).__init__()
# 第一个卷积块: 32x32x3 -> 28x28x6 -> 14x14x6
self.conv1 = ConvBlock(
in_channels=3,
out_channels=6,
kernel_size=5,
stride=1
)
# 第二个卷积块: 14x14x6 -> 10x10x16 -> 5x5x16
self.conv2 = ConvBlock(
in_channels=6,
out_channels=16,
kernel_size=5,
stride=1
)
# 全连接层
self.classifier = nn.Sequential(
nn.Linear(5*5*16, 120),
nn.ReLU(inplace=True),
nn.Linear(120, 84),
nn.ReLU(inplace=True),
nn.Linear(84, num_classes)
)
# 初始化权重
if init_weights:
self._initialize_weights()
def forward(self, x):
'''前向传播
Args:
x (torch.Tensor): 输入图像张量,[N,3,32,32]
Returns:
torch.Tensor: 输出预测张量,[N,num_classes]
'''
# 特征提取
x = self.conv1(x) # -> [N,6,14,14]
x = self.conv2(x) # -> [N,16,5,5]
# 分类
x = torch.flatten(x, 1) # -> [N,16*5*5]
x = self.classifier(x) # -> [N,num_classes]
return x
def _initialize_weights(self):
'''初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- 线性层权重采用normal_初始化
- 所有偏置项初始化为0
'''
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 采用kaiming初始化,适合ReLU激活函数
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
# 采用正态分布初始化
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def test():
"""测试函数
创建模型并进行前向传播测试,打印模型结构和参数信息
"""
# 创建模型
net = LeNet5()
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(2,3,32,32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (2,3,32,32))
if __name__ == '__main__':
test()