RRFRRF
add some cv models and update readme.md
bdbd148
raw
history blame
5.79 kB
'''
MobileNetV2 in PyTorch.
论文: "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation"
参考: https://arxiv.org/abs/1801.04381
主要特点:
1. 引入倒残差结构(Inverted Residual),先升维后降维
2. 使用线性瓶颈(Linear Bottlenecks),去除最后一个ReLU保留特征
3. 使用ReLU6作为激活函数,提高在低精度计算下的鲁棒性
4. 残差连接时使用加法而不是拼接,减少内存占用
'''
import torch
import torch.nn as nn
class Block(nn.Module):
'''倒残差块 (Inverted Residual Block)
结构: expand(1x1) -> depthwise(3x3) -> project(1x1)
特点:
1. 使用1x1卷积先升维再降维(与ResNet相反)
2. 使用深度可分离卷积减少参数量
3. 使用shortcut连接(当stride=1且输入输出通道数相同时)
Args:
in_channels: 输入通道数
out_channels: 输出通道数
expansion: 扩展因子,控制中间层的通道数
stride: 步长,控制特征图大小
'''
def __init__(self, in_channels, out_channels, expansion, stride):
super(Block, self).__init__()
self.stride = stride
channels = expansion * in_channels # 扩展通道数
# 1x1卷积升维
self.conv1 = nn.Conv2d(
in_channels, channels,
kernel_size=1, stride=1, padding=0, bias=False
)
self.bn1 = nn.BatchNorm2d(channels)
# 3x3深度可分离卷积
self.conv2 = nn.Conv2d(
channels, channels,
kernel_size=3, stride=stride, padding=1,
groups=channels, bias=False # groups=channels即为深度可分离卷积
)
self.bn2 = nn.BatchNorm2d(channels)
# 1x1卷积降维(线性瓶颈,不使用激活函数)
self.conv3 = nn.Conv2d(
channels, out_channels,
kernel_size=1, stride=1, padding=0, bias=False
)
self.bn3 = nn.BatchNorm2d(out_channels)
# shortcut连接
self.shortcut = nn.Sequential()
if stride == 1 and in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_channels, out_channels,
kernel_size=1, stride=1, padding=0, bias=False
),
nn.BatchNorm2d(out_channels)
)
self.relu6 = nn.ReLU6(inplace=True)
def forward(self, x):
# 主分支
out = self.relu6(self.bn1(self.conv1(x))) # 升维
out = self.relu6(self.bn2(self.conv2(out))) # 深度卷积
out = self.bn3(self.conv3(out)) # 降维(线性瓶颈)
# shortcut连接(仅在stride=1时)
out = out + self.shortcut(x) if self.stride == 1 else out
return out
class MobileNetV2(nn.Module):
'''MobileNetV2网络
Args:
num_classes: 分类数量
网络配置:
cfg = [(expansion, out_channels, num_blocks, stride), ...]
- expansion: 扩展因子
- out_channels: 输出通道数
- num_blocks: 块的数量
- stride: 第一个块的步长
'''
# 网络结构配置
cfg = [
# (expansion, out_channels, num_blocks, stride)
(1, 16, 1, 1), # conv1
(6, 24, 2, 1), # conv2,注意:原论文stride=2,这里改为1以适应CIFAR10
(6, 32, 3, 2), # conv3
(6, 64, 4, 2), # conv4
(6, 96, 3, 1), # conv5
(6, 160, 3, 2), # conv6
(6, 320, 1, 1), # conv7
]
def __init__(self, num_classes=10):
super(MobileNetV2, self).__init__()
# 第一层卷积(注意:原论文stride=2,这里改为1以适应CIFAR10)
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
# 主干网络
self.layers = self._make_layers(in_channels=32)
# 最后的1x1卷积
self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(1280)
# 分类器
self.avgpool = nn.AdaptiveAvgPool2d(1) # 全局平均池化
self.linear = nn.Linear(1280, num_classes)
self.relu6 = nn.ReLU6(inplace=True)
def _make_layers(self, in_channels):
'''构建网络层
Args:
in_channels: 输入通道数
'''
layers = []
for expansion, out_channels, num_blocks, stride in self.cfg:
# 对于每个配置,第一个block使用指定的stride,后续blocks使用stride=1
strides = [stride] + [1]*(num_blocks-1)
for stride in strides:
layers.append(
Block(in_channels, out_channels, expansion, stride)
)
in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
# 第一层卷积
out = self.relu6(self.bn1(self.conv1(x)))
# 主干网络
out = self.layers(out)
# 最后的1x1卷积
out = self.relu6(self.bn2(self.conv2(out)))
# 分类器
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def test():
"""测试函数"""
net = MobileNetV2()
x = torch.randn(2, 3, 32, 32)
y = net(x)
print(y.size())
# 打印模型结构
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (2, 3, 32, 32))
if __name__ == '__main__':
test()