|
''' |
|
MobileNetV2 in PyTorch. |
|
|
|
论文: "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" |
|
参考: https://arxiv.org/abs/1801.04381 |
|
|
|
主要特点: |
|
1. 引入倒残差结构(Inverted Residual),先升维后降维 |
|
2. 使用线性瓶颈(Linear Bottlenecks),去除最后一个ReLU保留特征 |
|
3. 使用ReLU6作为激活函数,提高在低精度计算下的鲁棒性 |
|
4. 残差连接时使用加法而不是拼接,减少内存占用 |
|
''' |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class Block(nn.Module): |
|
'''倒残差块 (Inverted Residual Block) |
|
|
|
结构: expand(1x1) -> depthwise(3x3) -> project(1x1) |
|
特点: |
|
1. 使用1x1卷积先升维再降维(与ResNet相反) |
|
2. 使用深度可分离卷积减少参数量 |
|
3. 使用shortcut连接(当stride=1且输入输出通道数相同时) |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
out_channels: 输出通道数 |
|
expansion: 扩展因子,控制中间层的通道数 |
|
stride: 步长,控制特征图大小 |
|
''' |
|
def __init__(self, in_channels, out_channels, expansion, stride): |
|
super(Block, self).__init__() |
|
self.stride = stride |
|
channels = expansion * in_channels |
|
|
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels, channels, |
|
kernel_size=1, stride=1, padding=0, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(channels) |
|
|
|
|
|
self.conv2 = nn.Conv2d( |
|
channels, channels, |
|
kernel_size=3, stride=stride, padding=1, |
|
groups=channels, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(channels) |
|
|
|
|
|
self.conv3 = nn.Conv2d( |
|
channels, out_channels, |
|
kernel_size=1, stride=1, padding=0, bias=False |
|
) |
|
self.bn3 = nn.BatchNorm2d(out_channels) |
|
|
|
|
|
self.shortcut = nn.Sequential() |
|
if stride == 1 and in_channels != out_channels: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels, out_channels, |
|
kernel_size=1, stride=1, padding=0, bias=False |
|
), |
|
nn.BatchNorm2d(out_channels) |
|
) |
|
|
|
self.relu6 = nn.ReLU6(inplace=True) |
|
|
|
def forward(self, x): |
|
|
|
out = self.relu6(self.bn1(self.conv1(x))) |
|
out = self.relu6(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
|
|
|
|
out = out + self.shortcut(x) if self.stride == 1 else out |
|
return out |
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
'''MobileNetV2网络 |
|
|
|
Args: |
|
num_classes: 分类数量 |
|
|
|
网络配置: |
|
cfg = [(expansion, out_channels, num_blocks, stride), ...] |
|
- expansion: 扩展因子 |
|
- out_channels: 输出通道数 |
|
- num_blocks: 块的数量 |
|
- stride: 第一个块的步长 |
|
''' |
|
|
|
cfg = [ |
|
|
|
(1, 16, 1, 1), |
|
(6, 24, 2, 1), |
|
(6, 32, 3, 2), |
|
(6, 64, 4, 2), |
|
(6, 96, 3, 1), |
|
(6, 160, 3, 2), |
|
(6, 320, 1, 1), |
|
] |
|
|
|
def __init__(self, num_classes=10): |
|
super(MobileNetV2, self).__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
|
|
|
|
self.layers = self._make_layers(in_channels=32) |
|
|
|
|
|
self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(1280) |
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
self.linear = nn.Linear(1280, num_classes) |
|
self.relu6 = nn.ReLU6(inplace=True) |
|
|
|
def _make_layers(self, in_channels): |
|
'''构建网络层 |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
''' |
|
layers = [] |
|
for expansion, out_channels, num_blocks, stride in self.cfg: |
|
|
|
strides = [stride] + [1]*(num_blocks-1) |
|
for stride in strides: |
|
layers.append( |
|
Block(in_channels, out_channels, expansion, stride) |
|
) |
|
in_channels = out_channels |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
out = self.relu6(self.bn1(self.conv1(x))) |
|
|
|
|
|
out = self.layers(out) |
|
|
|
|
|
out = self.relu6(self.bn2(self.conv2(out))) |
|
|
|
|
|
out = self.avgpool(out) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def test(): |
|
"""测试函数""" |
|
net = MobileNetV2() |
|
x = torch.randn(2, 3, 32, 32) |
|
y = net(x) |
|
print(y.size()) |
|
|
|
|
|
from torchinfo import summary |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
net = net.to(device) |
|
summary(net, (2, 3, 32, 32)) |
|
|
|
if __name__ == '__main__': |
|
test() |