|
''' |
|
ResNet in PyTorch. |
|
|
|
ResNet(深度残差网络)是由微软研究院的Kaiming He等人提出的深度神经网络架构。 |
|
主要创新点是引入了残差学习的概念,通过跳跃连接解决了深层网络的退化问题。 |
|
|
|
主要特点: |
|
1. 引入残差块(Residual Block),使用跳跃连接 |
|
2. 使用Batch Normalization进行归一化 |
|
3. 支持更深的网络结构(最深可达152层) |
|
4. 在多个计算机视觉任务上取得了突破性进展 |
|
|
|
Reference: |
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun |
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385 |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
|
|
class BasicBlock(nn.Module): |
|
"""基础残差块 |
|
|
|
用于ResNet18/34等浅层网络。结构为: |
|
x -> Conv -> BN -> ReLU -> Conv -> BN -> (+) -> ReLU |
|
|------------------------------------------| |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
out_channels: 输出通道数 |
|
stride: 步长,用于下采样,默认为1 |
|
|
|
注意:基础模块没有通道压缩,expansion=1 |
|
""" |
|
expansion = 1 |
|
|
|
def __init__(self, in_channels, out_channels, stride=1): |
|
super(BasicBlock,self).__init__() |
|
self.features = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(True), |
|
nn.Conv2d(out_channels,out_channels, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels) |
|
) |
|
|
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_channels != self.expansion * out_channels: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion * out_channels), |
|
) |
|
|
|
def forward(self, x): |
|
out = self.features(x) |
|
out += self.shortcut(x) |
|
out = torch.relu(out) |
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
"""瓶颈残差块 |
|
|
|
用于ResNet50/101/152等深层网络。结构为: |
|
x -> 1x1Conv -> BN -> ReLU -> 3x3Conv -> BN -> ReLU -> 1x1Conv -> BN -> (+) -> ReLU |
|
|-------------------------------------------------------------------| |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
zip_channels: 压缩后的通道数 |
|
stride: 步长,用于下采样,默认为1 |
|
|
|
注意:通过1x1卷积先压缩通道数,再还原,expansion=4 |
|
""" |
|
expansion = 4 |
|
|
|
def __init__(self, in_channels, zip_channels, stride=1): |
|
super(Bottleneck, self).__init__() |
|
out_channels = self.expansion * zip_channels |
|
self.features = nn.Sequential( |
|
|
|
nn.Conv2d(in_channels, zip_channels, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(zip_channels), |
|
nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(zip_channels, zip_channels, kernel_size=3, stride=stride, padding=1, bias=False), |
|
nn.BatchNorm2d(zip_channels), |
|
nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(zip_channels, out_channels, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_channels) |
|
) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_channels != out_channels: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_channels) |
|
) |
|
|
|
def forward(self, x): |
|
out = self.features(x) |
|
out += self.shortcut(x) |
|
out = torch.relu(out) |
|
return out |
|
|
|
class ResNet(nn.Module): |
|
"""ResNet模型 |
|
|
|
网络结构: |
|
1. 一个卷积层用于特征提取 |
|
2. 四个残差层,每层包含多个残差块 |
|
3. 平均池化和全连接层进行分类 |
|
|
|
对于CIFAR10,特征图大小变化为: |
|
(32,32,3) -> [Conv] -> (32,32,64) -> [Layer1] -> (32,32,64) -> [Layer2] |
|
-> (16,16,128) -> [Layer3] -> (8,8,256) -> [Layer4] -> (4,4,512) -> [AvgPool] |
|
-> (1,1,512) -> [FC] -> (num_classes) |
|
|
|
Args: |
|
block: 残差块类型(BasicBlock或Bottleneck) |
|
num_blocks: 每层残差块数量的列表 |
|
num_classes: 分类数量,默认为10 |
|
verbose: 是否打印中间特征图大小 |
|
init_weights: 是否初始化权重 |
|
""" |
|
def __init__(self, block, num_blocks, num_classes=10, verbose=False, init_weights=True): |
|
super(ResNet, self).__init__() |
|
self.verbose = verbose |
|
self.in_channels = 64 |
|
|
|
|
|
self.features = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
|
|
|
|
self.avg_pool = nn.AvgPool2d(kernel_size=4) |
|
self.classifier = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
if init_weights: |
|
self._initialize_weights() |
|
|
|
def _make_layer(self, block, out_channels, num_blocks, stride): |
|
"""构建残差层 |
|
|
|
Args: |
|
block: 残差块类型 |
|
out_channels: 输出通道数 |
|
num_blocks: 残差块数量 |
|
stride: 第一个残差块的步长(用于下采样) |
|
|
|
Returns: |
|
nn.Sequential: 残差层 |
|
""" |
|
strides = [stride] + [1] * (num_blocks - 1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_channels, out_channels, stride)) |
|
self.in_channels = out_channels * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
"""前向传播 |
|
|
|
Args: |
|
x: 输入张量,[N,3,32,32] |
|
|
|
Returns: |
|
out: 输出张量,[N,num_classes] |
|
""" |
|
out = self.features(x) |
|
if self.verbose: |
|
print('block 1 output: {}'.format(out.shape)) |
|
|
|
out = self.layer1(out) |
|
if self.verbose: |
|
print('block 2 output: {}'.format(out.shape)) |
|
|
|
out = self.layer2(out) |
|
if self.verbose: |
|
print('block 3 output: {}'.format(out.shape)) |
|
|
|
out = self.layer3(out) |
|
if self.verbose: |
|
print('block 4 output: {}'.format(out.shape)) |
|
|
|
out = self.layer4(out) |
|
if self.verbose: |
|
print('block 5 output: {}'.format(out.shape)) |
|
|
|
out = self.avg_pool(out) |
|
out = out.view(out.size(0), -1) |
|
out = self.classifier(out) |
|
return out |
|
|
|
def _initialize_weights(self): |
|
"""初始化模型权重 |
|
|
|
采用kaiming初始化方法: |
|
- 卷积层权重采用kaiming_normal_初始化 |
|
- BN层参数采用常数初始化 |
|
- 线性层采用正态分布初始化 |
|
""" |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def ResNet18(verbose=False): |
|
"""ResNet-18模型""" |
|
return ResNet(BasicBlock, [2,2,2,2], verbose=verbose) |
|
|
|
def ResNet34(verbose=False): |
|
"""ResNet-34模型""" |
|
return ResNet(BasicBlock, [3,4,6,3], verbose=verbose) |
|
|
|
def ResNet50(verbose=False): |
|
"""ResNet-50模型""" |
|
return ResNet(Bottleneck, [3,4,6,3], verbose=verbose) |
|
|
|
def ResNet101(verbose=False): |
|
"""ResNet-101模型""" |
|
return ResNet(Bottleneck, [3,4,23,3], verbose=verbose) |
|
|
|
def ResNet152(verbose=False): |
|
"""ResNet-152模型""" |
|
return ResNet(Bottleneck, [3,8,36,3], verbose=verbose) |
|
|
|
def test(): |
|
"""测试函数""" |
|
net = ResNet34() |
|
x = torch.randn(2,3,32,32) |
|
y = net(x) |
|
print('Output shape:', y.size()) |
|
|
|
|
|
from torchinfo import summary |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
net = net.to(device) |
|
summary(net,(2,3,32,32)) |
|
|
|
if __name__ == '__main__': |
|
test() |