RRFRRF
add some cv models and update readme.md
bdbd148
raw
history blame
8.14 kB
'''
ShuffleNet in PyTorch.
ShuffleNet是一个专门为移动设备设计的高效卷积神经网络。其主要创新点在于使用了两个新操作:
1. 逐点组卷积(pointwise group convolution)
2. 通道重排(channel shuffle)
这两个操作大大降低了计算复杂度,同时保持了良好的准确率。
主要特点:
1. 使用组卷积减少参数量和计算量
2. 使用通道重排操作使不同组之间的信息可以流通
3. 使用深度可分离卷积进一步降低计算复杂度
4. 设计了多个计算复杂度版本以适应不同的设备
Reference:
[1] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class ShuffleBlock(nn.Module):
"""通道重排模块
通过重新排列通道的顺序来实现不同组之间的信息交流。
Args:
groups (int): 分组数量
"""
def __init__(self, groups):
super(ShuffleBlock, self).__init__()
self.groups = groups
def forward(self, x):
"""通道重排的前向传播
步骤:
1. [N,C,H,W] -> [N,g,C/g,H,W] # 重塑为g组
2. [N,g,C/g,H,W] -> [N,C/g,g,H,W] # 转置g维度
3. [N,C/g,g,H,W] -> [N,C,H,W] # 重塑回原始形状
Args:
x: 输入张量,[N,C,H,W]
Returns:
out: 通道重排后的张量,[N,C,H,W]
"""
N, C, H, W = x.size()
g = self.groups
return x.view(N,g,C//g,H,W).permute(0,2,1,3,4).reshape(N,C,H,W)
class Bottleneck(nn.Module):
"""ShuffleNet的基本模块
结构:
x -> 1x1 GConv -> BN -> Shuffle -> 3x3 DWConv -> BN -> 1x1 GConv -> BN -> (+) -> ReLU
|---------------------|
Args:
in_channels (int): 输入通道数
out_channels (int): 输出通道数
stride (int): 步长,用于下采样
groups (int): 组卷积的分组数
"""
def __init__(self, in_channels, out_channels, stride, groups):
super(Bottleneck, self).__init__()
self.stride = stride
# 确定中间通道数和分组数
mid_channels = out_channels // 4
g = 1 if in_channels == 24 else groups
# 第一个1x1组卷积
self.conv1 = nn.Conv2d(in_channels, mid_channels,
kernel_size=1, groups=g, bias=False)
self.bn1 = nn.BatchNorm2d(mid_channels)
self.shuffle1 = ShuffleBlock(groups=g)
# 3x3深度可分离卷积
self.conv2 = nn.Conv2d(mid_channels, mid_channels,
kernel_size=3, stride=stride, padding=1,
groups=mid_channels, bias=False)
self.bn2 = nn.BatchNorm2d(mid_channels)
# 第二个1x1组卷积
self.conv3 = nn.Conv2d(mid_channels, out_channels,
kernel_size=1, groups=groups, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
# 残差连接
self.shortcut = nn.Sequential()
if stride == 2:
self.shortcut = nn.Sequential(
nn.AvgPool2d(3, stride=2, padding=1)
)
def forward(self, x):
# 主分支
out = F.relu(self.bn1(self.conv1(x)))
out = self.shuffle1(out)
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
# 残差连接
res = self.shortcut(x)
# 如果是下采样层,拼接残差;否则相加
out = F.relu(torch.cat([out, res], 1)) if self.stride == 2 else F.relu(out + res)
return out
class ShuffleNet(nn.Module):
"""ShuffleNet模型
网络结构:
1. 一个卷积层进行特征提取
2. 三个阶段,每个阶段包含多个带重排的残差块
3. 平均池化和全连接层进行分类
Args:
cfg (dict): 配置字典,包含:
- out_channels (list): 每个阶段的输出通道数
- num_blocks (list): 每个阶段的块数
- groups (int): 组卷积的分组数
"""
def __init__(self, cfg):
super(ShuffleNet, self).__init__()
out_channels = cfg['out_channels']
num_blocks = cfg['num_blocks']
groups = cfg['groups']
# 第一层卷积
self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(24)
self.in_channels = 24
# 三个阶段
self.layer1 = self._make_layer(out_channels[0], num_blocks[0], groups)
self.layer2 = self._make_layer(out_channels[1], num_blocks[1], groups)
self.layer3 = self._make_layer(out_channels[2], num_blocks[2], groups)
# 分类层
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(out_channels[2], 10)
# 初始化权重
self._initialize_weights()
def _make_layer(self, out_channels, num_blocks, groups):
"""构建ShuffleNet的一个阶段
Args:
out_channels (int): 输出通道数
num_blocks (int): 块的数量
groups (int): 分组数
Returns:
nn.Sequential: 一个阶段的层序列
"""
layers = []
for i in range(num_blocks):
stride = 2 if i == 0 else 1
cat_channels = self.in_channels if i == 0 else 0
layers.append(
Bottleneck(
self.in_channels,
out_channels - cat_channels,
stride=stride,
groups=groups
)
)
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x: 输入张量,[N,3,32,32]
Returns:
out: 输出张量,[N,num_classes]
"""
# 特征提取
out = F.relu(self.bn1(self.conv1(x)))
# 三个阶段
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
# 分类
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _initialize_weights(self):
"""初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- BN层参数采用常数初始化
- 线性层采用正态分布初始化
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def ShuffleNetG2():
"""返回groups=2的ShuffleNet模型"""
cfg = {
'out_channels': [200,400,800],
'num_blocks': [4,8,4],
'groups': 2
}
return ShuffleNet(cfg)
def ShuffleNetG3():
"""返回groups=3的ShuffleNet模型"""
cfg = {
'out_channels': [240,480,960],
'num_blocks': [4,8,4],
'groups': 3
}
return ShuffleNet(cfg)
def test():
"""测试函数"""
# 创建模型
net = ShuffleNetG2()
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(1,3,32,32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (1,3,32,32))
if __name__ == '__main__':
test()