|
''' |
|
ShuffleNetV2 in PyTorch. |
|
|
|
ShuffleNetV2是ShuffleNet的改进版本,通过实验总结出了四个高效网络设计的实用准则: |
|
1. 输入输出通道数相等时计算量最小 |
|
2. 过度使用组卷积会增加MAC(内存访问代价) |
|
3. 网络碎片化会降低并行度 |
|
4. Element-wise操作不可忽视 |
|
|
|
主要改进: |
|
1. 通道分离(Channel Split)替代组卷积 |
|
2. 重新设计了基本单元,使输入输出通道数相等 |
|
3. 每个阶段使用不同的通道数配置 |
|
4. 简化了下采样模块的设计 |
|
|
|
Reference: |
|
[1] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun |
|
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class ShuffleBlock(nn.Module): |
|
"""通道重排模块 |
|
|
|
通过重新排列通道的顺序来实现不同特征的信息交流。 |
|
|
|
Args: |
|
groups (int): 分组数量,默认为2 |
|
""" |
|
def __init__(self, groups=2): |
|
super(ShuffleBlock, self).__init__() |
|
self.groups = groups |
|
|
|
def forward(self, x): |
|
"""通道重排的前向传播 |
|
|
|
步骤: |
|
1. [N,C,H,W] -> [N,g,C/g,H,W] # 重塑为g组 |
|
2. [N,g,C/g,H,W] -> [N,C/g,g,H,W] # 转置g维度 |
|
3. [N,C/g,g,H,W] -> [N,C,H,W] # 重塑回原始形状 |
|
|
|
Args: |
|
x: 输入张量,[N,C,H,W] |
|
|
|
Returns: |
|
out: 通道重排后的张量,[N,C,H,W] |
|
""" |
|
N, C, H, W = x.size() |
|
g = self.groups |
|
return x.view(N, g, C//g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W) |
|
|
|
|
|
class SplitBlock(nn.Module): |
|
"""通道分离模块 |
|
|
|
将输入特征图按比例分成两部分。 |
|
|
|
Args: |
|
ratio (float): 分离比例,默认为0.5 |
|
""" |
|
def __init__(self, ratio): |
|
super(SplitBlock, self).__init__() |
|
self.ratio = ratio |
|
|
|
def forward(self, x): |
|
"""通道分离的前向传播 |
|
|
|
Args: |
|
x: 输入张量,[N,C,H,W] |
|
|
|
Returns: |
|
tuple: 分离后的两个张量,[N,C1,H,W]和[N,C2,H,W] |
|
""" |
|
c = int(x.size(1) * self.ratio) |
|
return x[:, :c, :, :], x[:, c:, :, :] |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
"""ShuffleNetV2的基本模块 |
|
|
|
结构: |
|
x -------|-----------------| |
|
| | | |
|
| 1x1 Conv | |
|
| 3x3 DWConv | |
|
| 1x1 Conv | |
|
| | |
|
|------------------Concat |
|
| |
|
Channel Shuffle |
|
|
|
Args: |
|
in_channels (int): 输入通道数 |
|
split_ratio (float): 通道分离比例,默认为0.5 |
|
""" |
|
def __init__(self, in_channels, split_ratio=0.5): |
|
super(BasicBlock, self).__init__() |
|
self.split = SplitBlock(split_ratio) |
|
in_channels = int(in_channels * split_ratio) |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, in_channels, |
|
kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
|
|
self.conv2 = nn.Conv2d(in_channels, in_channels, |
|
kernel_size=3, stride=1, padding=1, |
|
groups=in_channels, bias=False) |
|
self.bn2 = nn.BatchNorm2d(in_channels) |
|
|
|
self.conv3 = nn.Conv2d(in_channels, in_channels, |
|
kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(in_channels) |
|
|
|
self.shuffle = ShuffleBlock() |
|
|
|
def forward(self, x): |
|
|
|
x1, x2 = self.split(x) |
|
|
|
|
|
out = F.relu(self.bn1(self.conv1(x2))) |
|
out = self.bn2(self.conv2(out)) |
|
out = F.relu(self.bn3(self.conv3(out))) |
|
|
|
|
|
out = torch.cat([x1, out], 1) |
|
out = self.shuffle(out) |
|
return out |
|
|
|
|
|
class DownBlock(nn.Module): |
|
"""下采样模块 |
|
|
|
结构: |
|
3x3 DWConv(s=2) 1x1 Conv |
|
x -----> 1x1 Conv 3x3 DWConv(s=2) |
|
1x1 Conv |
|
| |
|
Concat |
|
| |
|
Channel Shuffle |
|
|
|
Args: |
|
in_channels (int): 输入通道数 |
|
out_channels (int): 输出通道数 |
|
""" |
|
def __init__(self, in_channels, out_channels): |
|
super(DownBlock, self).__init__() |
|
mid_channels = out_channels // 2 |
|
|
|
|
|
self.branch1 = nn.Sequential( |
|
|
|
nn.Conv2d(in_channels, in_channels, |
|
kernel_size=3, stride=2, padding=1, |
|
groups=in_channels, bias=False), |
|
nn.BatchNorm2d(in_channels), |
|
|
|
nn.Conv2d(in_channels, mid_channels, |
|
kernel_size=1, bias=False), |
|
nn.BatchNorm2d(mid_channels) |
|
) |
|
|
|
|
|
self.branch2 = nn.Sequential( |
|
|
|
nn.Conv2d(in_channels, mid_channels, |
|
kernel_size=1, bias=False), |
|
nn.BatchNorm2d(mid_channels), |
|
|
|
nn.Conv2d(mid_channels, mid_channels, |
|
kernel_size=3, stride=2, padding=1, |
|
groups=mid_channels, bias=False), |
|
nn.BatchNorm2d(mid_channels), |
|
|
|
nn.Conv2d(mid_channels, mid_channels, |
|
kernel_size=1, bias=False), |
|
nn.BatchNorm2d(mid_channels) |
|
) |
|
|
|
self.shuffle = ShuffleBlock() |
|
|
|
def forward(self, x): |
|
|
|
out1 = self.branch1(x) |
|
|
|
|
|
out2 = self.branch2(x) |
|
|
|
|
|
out = torch.cat([out1, out2], 1) |
|
out = self.shuffle(out) |
|
return out |
|
|
|
|
|
class ShuffleNetV2(nn.Module): |
|
"""ShuffleNetV2模型 |
|
|
|
网络结构: |
|
1. 一个卷积层进行特征提取 |
|
2. 三个阶段,每个阶段包含多个基本块和一个下采样块 |
|
3. 最后一个卷积层 |
|
4. 平均池化和全连接层进行分类 |
|
|
|
Args: |
|
net_size (float): 网络大小系数,可选0.5/1.0/1.5/2.0 |
|
""" |
|
def __init__(self, net_size): |
|
super(ShuffleNetV2, self).__init__() |
|
out_channels = configs[net_size]['out_channels'] |
|
num_blocks = configs[net_size]['num_blocks'] |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 24, kernel_size=3, |
|
stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(24) |
|
self.in_channels = 24 |
|
|
|
|
|
self.layer1 = self._make_layer(out_channels[0], num_blocks[0]) |
|
self.layer2 = self._make_layer(out_channels[1], num_blocks[1]) |
|
self.layer3 = self._make_layer(out_channels[2], num_blocks[2]) |
|
|
|
|
|
self.conv2 = nn.Conv2d(out_channels[2], out_channels[3], |
|
kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(out_channels[3]) |
|
|
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.classifier = nn.Linear(out_channels[3], 10) |
|
|
|
|
|
self._initialize_weights() |
|
|
|
def _make_layer(self, out_channels, num_blocks): |
|
"""构建一个阶段 |
|
|
|
Args: |
|
out_channels (int): 输出通道数 |
|
num_blocks (int): 基本块的数量 |
|
|
|
Returns: |
|
nn.Sequential: 一个阶段的层序列 |
|
""" |
|
layers = [DownBlock(self.in_channels, out_channels)] |
|
for i in range(num_blocks): |
|
layers.append(BasicBlock(out_channels)) |
|
self.in_channels = out_channels |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
"""前向传播 |
|
|
|
Args: |
|
x: 输入张量,[N,3,32,32] |
|
|
|
Returns: |
|
out: 输出张量,[N,num_classes] |
|
""" |
|
|
|
out = F.relu(self.bn1(self.conv1(x))) |
|
|
|
|
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
|
|
|
|
out = F.relu(self.bn2(self.conv2(out))) |
|
|
|
|
|
out = self.avg_pool(out) |
|
out = out.view(out.size(0), -1) |
|
out = self.classifier(out) |
|
return out |
|
|
|
def _initialize_weights(self): |
|
"""初始化模型权重 |
|
|
|
采用kaiming初始化方法: |
|
- 卷积层权重采用kaiming_normal_初始化 |
|
- BN层参数采用常数初始化 |
|
- 线性层采用正态分布初始化 |
|
""" |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
configs = { |
|
0.5: { |
|
'out_channels': (48, 96, 192, 1024), |
|
'num_blocks': (3, 7, 3) |
|
}, |
|
1.0: { |
|
'out_channels': (116, 232, 464, 1024), |
|
'num_blocks': (3, 7, 3) |
|
}, |
|
1.5: { |
|
'out_channels': (176, 352, 704, 1024), |
|
'num_blocks': (3, 7, 3) |
|
}, |
|
2.0: { |
|
'out_channels': (224, 488, 976, 2048), |
|
'num_blocks': (3, 7, 3) |
|
} |
|
} |
|
|
|
|
|
def test(): |
|
"""测试函数""" |
|
|
|
net = ShuffleNetV2(net_size=0.5) |
|
print('Model Structure:') |
|
print(net) |
|
|
|
|
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print('\nInput Shape:', x.shape) |
|
print('Output Shape:', y.shape) |
|
|
|
|
|
from torchinfo import summary |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
net = net.to(device) |
|
summary(net, (1,3,32,32)) |
|
|
|
|
|
if __name__ == '__main__': |
|
test() |