|
''' |
|
VGG Networks in PyTorch |
|
|
|
VGG是由牛津大学Visual Geometry Group提出的一个深度卷积神经网络模型。 |
|
主要特点: |
|
1. 使用小卷积核(3x3)代替大卷积核,降低参数量 |
|
2. 深层网络结构,多个卷积层叠加 |
|
3. 使用多个3x3卷积层的组合来代替大的感受野 |
|
4. 结构规整,易于扩展 |
|
|
|
网络结构示例(VGG16): |
|
input |
|
└─> [(Conv3x3, 64) × 2, MaxPool] |
|
└─> [(Conv3x3, 128) × 2, MaxPool] |
|
└─> [(Conv3x3, 256) × 3, MaxPool] |
|
└─> [(Conv3x3, 512) × 3, MaxPool] |
|
└─> [(Conv3x3, 512) × 3, MaxPool] |
|
└─> [AvgPool, Flatten] |
|
└─> FC(512, num_classes) |
|
|
|
参考论文: |
|
[1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," |
|
arXiv preprint arXiv:1409.1556, 2014. |
|
''' |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
cfg = { |
|
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], |
|
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], |
|
} |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
"""VGG的基本卷积块 |
|
|
|
包含: Conv2d -> BatchNorm -> ReLU |
|
使用3x3卷积核,步长为1,padding为1以保持特征图大小不变 |
|
|
|
Args: |
|
in_channels (int): 输入通道数 |
|
out_channels (int): 输出通道数 |
|
batch_norm (bool): 是否使用BatchNorm,默认为True |
|
""" |
|
def __init__(self, in_channels, out_channels, batch_norm=True): |
|
super(ConvBlock, self).__init__() |
|
|
|
layers = [] |
|
|
|
layers.append( |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1 |
|
) |
|
) |
|
|
|
|
|
if batch_norm: |
|
layers.append(nn.BatchNorm2d(out_channels)) |
|
|
|
|
|
layers.append(nn.ReLU(inplace=True)) |
|
|
|
self.block = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
"""前向传播 |
|
|
|
Args: |
|
x (torch.Tensor): 输入特征图 |
|
|
|
Returns: |
|
torch.Tensor: 输出特征图 |
|
""" |
|
return self.block(x) |
|
|
|
|
|
class VGG(nn.Module): |
|
"""VGG网络模型 |
|
|
|
Args: |
|
vgg_name (str): VGG变体名称,可选VGG11/13/16/19 |
|
num_classes (int): 分类数量,默认为10 |
|
batch_norm (bool): 是否使用BatchNorm,默认为True |
|
init_weights (bool): 是否初始化权重,默认为True |
|
""" |
|
def __init__(self, vgg_name='VGG16', num_classes=10, batch_norm=True, init_weights=True): |
|
super(VGG, self).__init__() |
|
|
|
|
|
self.features = self._make_layers(cfg[vgg_name], batch_norm) |
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
|
|
self.classifier = nn.Sequential( |
|
nn.Linear(512, num_classes) |
|
) |
|
|
|
|
|
if init_weights: |
|
self._initialize_weights() |
|
|
|
def _make_layers(self, cfg, batch_norm=True): |
|
"""构建VGG的特征提取层 |
|
|
|
Args: |
|
cfg (List): 网络配置参数 |
|
batch_norm (bool): 是否使用BatchNorm |
|
|
|
Returns: |
|
nn.Sequential: 特征提取层序列 |
|
""" |
|
layers = [] |
|
in_channels = 3 |
|
|
|
for x in cfg: |
|
if x == 'M': |
|
layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) |
|
else: |
|
layers.append(ConvBlock(in_channels, x, batch_norm)) |
|
in_channels = x |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
"""前向传播 |
|
|
|
Args: |
|
x (torch.Tensor): 输入图像张量,[N,3,H,W] |
|
|
|
Returns: |
|
torch.Tensor: 输出预测张量,[N,num_classes] |
|
""" |
|
|
|
x = self.features(x) |
|
|
|
|
|
x = self.avgpool(x) |
|
|
|
|
|
x = torch.flatten(x, 1) |
|
|
|
|
|
x = self.classifier(x) |
|
return x |
|
|
|
def _initialize_weights(self): |
|
"""初始化模型权重 |
|
|
|
采用论文中的初始化方法: |
|
- 卷积层: xavier初始化 |
|
- BatchNorm: weight=1, bias=0 |
|
- 线性层: 正态分布初始化(std=0.01) |
|
""" |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
|
|
nn.init.xavier_normal_(m.weight) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.zeros_(m.bias) |
|
|
|
|
|
def test(): |
|
"""测试函数 |
|
|
|
创建VGG模型并进行前向传播测试,打印模型结构和参数信息 |
|
""" |
|
|
|
net = VGG('VGG16') |
|
print('Model Structure:') |
|
print(net) |
|
|
|
|
|
x = torch.randn(2, 3, 32, 32) |
|
y = net(x) |
|
print('\nInput Shape:', x.shape) |
|
print('Output Shape:', y.shape) |
|
|
|
|
|
from torchinfo import summary |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
net = net.to(device) |
|
summary(net, (2, 3, 32, 32)) |
|
|
|
|
|
if __name__ == '__main__': |
|
test() |