ttvnet / Image /run_all_models.py
RRFRRF's picture
fix
870f4fc
raw
history blame
1.91 kB
import os
import subprocess
from pathlib import Path
# 模型列表
models = [
'AlexNet', 'DenseNet', 'EfficientNet', 'GoogLeNet', 'LeNet5',
'MobileNetv1', 'MobileNetv2', 'MobileNetv3', 'ResNet', 'SENet',
'ShuffleNet', 'ShuffleNetv2', 'SwinTransformer', 'VGG', 'ViT', 'ZFNet'
]
def run_training(model_name, train_type, script_dir):
"""运行指定模型的训练"""
model_code_dir = os.path.join(script_dir, model_name, 'code')
train_script = os.path.join(model_code_dir, 'train.py')
dataset_path = os.path.join(script_dir, 'AlexNet', 'dataset')
if not os.path.exists(train_script):
print(f"警告: {train_script} 不存在,跳过")
return
# 切换到模型的code目录
os.chdir(model_code_dir)
cmd = [
'python', 'train.py', # 使用相对路径
'--train-type', train_type,
'--dataset-path', dataset_path, # 保持dataset_path为绝对路径
'--gpu', '1'
]
print(f"\n开始训练 {model_name} (train_type={train_type})")
print(f"工作目录: {os.getcwd()}")
print(f"执行命令: {' '.join(cmd)}")
try:
subprocess.run(cmd, check=True)
print(f"{model_name} (train_type={train_type}) 训练完成")
except subprocess.CalledProcessError as e:
print(f"错误: {model_name} (train_type={train_type}) 训练失败")
print(f"错误信息: {str(e)}")
def main():
# 获取脚本的绝对路径
script_dir = os.path.dirname(os.path.abspath(__file__))
original_dir = os.getcwd() # 保存原始工作目录
try:
# 遍历所有模型和训练类型
for model in models:
for train_type in ['0', '1', '2']:
run_training(model, train_type, script_dir)
finally:
# 恢复原始工作目录
os.chdir(original_dir)
if __name__ == '__main__':
main()