RRFRRF
add some cv models and update readme.md
bdbd148
raw
history blame
5.1 kB
'''
GoogLeNet in PyTorch.
Paper: "Going Deeper with Convolutions"
Reference: https://arxiv.org/abs/1409.4842
主要特点:
1. 使用Inception模块,通过多尺度卷积提取特征
2. 采用1x1卷积降维,减少计算量
3. 使用全局平均池化代替全连接层
4. 引入辅助分类器帮助训练(本实现未包含)
'''
import torch
import torch.nn as nn
class Inception(nn.Module):
'''Inception模块
Args:
in_planes: 输入通道数
n1x1: 1x1卷积分支的输出通道数
n3x3red: 3x3卷积分支的降维通道数
n3x3: 3x3卷积分支的输出通道数
n5x5red: 5x5卷积分支的降维通道数
n5x5: 5x5卷积分支的输出通道数
pool_planes: 池化分支的输出通道数
'''
def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
super(Inception, self).__init__()
# 1x1卷积分支
self.branch1 = nn.Sequential(
nn.Conv2d(in_planes, n1x1, kernel_size=1),
nn.BatchNorm2d(n1x1),
nn.ReLU(True),
)
# 1x1 -> 3x3卷积分支
self.branch2 = nn.Sequential(
nn.Conv2d(in_planes, n3x3red, kernel_size=1),
nn.BatchNorm2d(n3x3red),
nn.ReLU(True),
nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
nn.BatchNorm2d(n3x3),
nn.ReLU(True),
)
# 1x1 -> 5x5卷积分支(用两个3x3代替)
self.branch3 = nn.Sequential(
nn.Conv2d(in_planes, n5x5red, kernel_size=1),
nn.BatchNorm2d(n5x5red),
nn.ReLU(True),
nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1),
nn.BatchNorm2d(n5x5),
nn.ReLU(True),
nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
nn.BatchNorm2d(n5x5),
nn.ReLU(True),
)
# 3x3池化 -> 1x1卷积分支
self.branch4 = nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
nn.BatchNorm2d(pool_planes),
nn.ReLU(True),
)
def forward(self, x):
'''前向传播,将四个分支的输出在通道维度上拼接'''
b1 = self.branch1(x)
b2 = self.branch2(x)
b3 = self.branch3(x)
b4 = self.branch4(x)
return torch.cat([b1, b2, b3, b4], 1)
class GoogLeNet(nn.Module):
'''GoogLeNet/Inception v1网络
特点:
1. 使用Inception模块构建深层网络
2. 通过1x1卷积降维减少计算量
3. 使用全局平均池化代替全连接层减少参数量
'''
def __init__(self, num_classes=10):
super(GoogLeNet, self).__init__()
# 第一阶段:标准卷积层
self.pre_layers = nn.Sequential(
nn.Conv2d(3, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192),
nn.ReLU(True),
)
# 第二阶段:2个Inception模块
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) # 输出通道:256
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) # 输出通道:480
# 最大池化层
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
# 第三阶段:5个Inception模块
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) # 输出通道:512
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) # 输出通道:512
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) # 输出通道:512
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) # 输出通道:528
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) # 输出通道:832
# 第四阶段:2个Inception模块
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) # 输出通道:832
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) # 输出通道:1024
# 全局平均池化和分类器
self.avgpool = nn.AvgPool2d(8, stride=1)
self.linear = nn.Linear(1024, num_classes)
def forward(self, x):
# 第一阶段
out = self.pre_layers(x)
# 第二阶段
out = self.a3(out)
out = self.b3(out)
out = self.maxpool(out)
# 第三阶段
out = self.a4(out)
out = self.b4(out)
out = self.c4(out)
out = self.d4(out)
out = self.e4(out)
out = self.maxpool(out)
# 第四阶段
out = self.a5(out)
out = self.b5(out)
# 分类器
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def test():
"""测试函数"""
net = GoogLeNet()
x = torch.randn(1, 3, 32, 32)
y = net(x)
print(y.size())
# 打印模型结构
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (1, 3, 32, 32))
if __name__ == '__main__':
test()