RRFRRF
add some cv models and update readme.md
bdbd148
'''
EfficientNet in PyTorch.
Paper: "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks"
Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py
主要特点:
1. 使用MBConv作为基本模块,包含SE注意力机制
2. 通过复合缩放方法(compound scaling)同时调整网络的宽度、深度和分辨率
3. 使用Swish激活函数和DropConnect正则化
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def swish(x):
"""Swish激活函数: x * sigmoid(x)"""
return x * x.sigmoid()
def drop_connect(x, drop_ratio):
"""DropConnect正则化
Args:
x: 输入tensor
drop_ratio: 丢弃率
Returns:
经过DropConnect处理的tensor
"""
keep_ratio = 1.0 - drop_ratio
mask = torch.empty([x.shape[0], 1, 1, 1], dtype=x.dtype, device=x.device)
mask.bernoulli_(keep_ratio)
x.div_(keep_ratio)
x.mul_(mask)
return x
class SE(nn.Module):
'''Squeeze-and-Excitation注意力模块
Args:
in_channels: 输入通道数
se_channels: SE模块中间层的通道数
'''
def __init__(self, in_channels, se_channels):
super(SE, self).__init__()
self.se1 = nn.Conv2d(in_channels, se_channels, kernel_size=1, bias=True)
self.se2 = nn.Conv2d(se_channels, in_channels, kernel_size=1, bias=True)
def forward(self, x):
out = F.adaptive_avg_pool2d(x, (1, 1)) # 全局平均池化
out = swish(self.se1(out))
out = self.se2(out).sigmoid()
return x * out # 特征重标定
class MBConv(nn.Module):
'''MBConv模块: Mobile Inverted Bottleneck Convolution
Args:
in_channels: 输入通道数
out_channels: 输出通道数
kernel_size: 卷积核大小
stride: 步长
expand_ratio: 扩展比率
se_ratio: SE模块的压缩比率
drop_rate: DropConnect的丢弃率
'''
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
expand_ratio=1,
se_ratio=0.25,
drop_rate=0.):
super(MBConv, self).__init__()
self.stride = stride
self.drop_rate = drop_rate
self.expand_ratio = expand_ratio
# Expansion phase
channels = expand_ratio * in_channels
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(channels)
# Depthwise conv
self.conv2 = nn.Conv2d(channels, channels, kernel_size=kernel_size, stride=stride,
padding=(1 if kernel_size == 3 else 2), groups=channels, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
# SE layers
se_channels = int(in_channels * se_ratio)
self.se = SE(channels, se_channels)
# Output phase
self.conv3 = nn.Conv2d(channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
# Shortcut connection
self.has_skip = (stride == 1) and (in_channels == out_channels)
def forward(self, x):
# Expansion
out = x if self.expand_ratio == 1 else swish(self.bn1(self.conv1(x)))
# Depthwise convolution
out = swish(self.bn2(self.conv2(out)))
# Squeeze-and-excitation
out = self.se(out)
# Pointwise convolution
out = self.bn3(self.conv3(out))
# Shortcut
if self.has_skip:
if self.training and self.drop_rate > 0:
out = drop_connect(out, self.drop_rate)
out = out + x
return out
class EfficientNet(nn.Module):
'''EfficientNet模型
Args:
width_coefficient: 宽度系数
depth_coefficient: 深度系数
dropout_rate: 分类层的dropout率
num_classes: 分类数量
'''
def __init__(self,
width_coefficient=1.0,
depth_coefficient=1.0,
dropout_rate=0.2,
num_classes=10):
super(EfficientNet, self).__init__()
# 模型配置
cfg = {
'num_blocks': [1, 2, 2, 3, 3, 4, 1], # 每个stage的block数量
'expansion': [1, 6, 6, 6, 6, 6, 6], # 扩展比率
'out_channels': [16, 24, 40, 80, 112, 192, 320], # 输出通道数
'kernel_size': [3, 3, 5, 3, 5, 5, 3], # 卷积核大小
'stride': [1, 2, 2, 2, 1, 2, 1], # 步长
'dropout_rate': dropout_rate,
'drop_connect_rate': 0.2,
}
self.cfg = cfg
self.width_coefficient = width_coefficient
self.depth_coefficient = depth_coefficient
# Stem layer
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
# Build blocks
self.layers = self._make_layers(in_channels=32)
# Head layer
final_channels = cfg['out_channels'][-1] * int(width_coefficient)
self.linear = nn.Linear(final_channels, num_classes)
def _make_layers(self, in_channels):
layers = []
cfg = [self.cfg[k] for k in ['expansion', 'out_channels', 'num_blocks', 'kernel_size', 'stride']]
blocks = sum(self.cfg['num_blocks'])
b = 0 # 用于计算drop_connect_rate
for expansion, out_channels, num_blocks, kernel_size, stride in zip(*cfg):
out_channels = int(out_channels * self.width_coefficient)
num_blocks = int(math.ceil(num_blocks * self.depth_coefficient))
for i in range(num_blocks):
stride_i = stride if i == 0 else 1
drop_rate = self.cfg['drop_connect_rate'] * b / blocks
layers.append(
MBConv(in_channels,
out_channels,
kernel_size,
stride_i,
expansion,
se_ratio=0.25,
drop_rate=drop_rate))
in_channels = out_channels
b += 1
return nn.Sequential(*layers)
def forward(self, x):
# Stem
out = swish(self.bn1(self.conv1(x)))
# Blocks
out = self.layers(out)
# Head
out = F.adaptive_avg_pool2d(out, 1)
out = out.view(out.size(0), -1)
if self.training and self.cfg['dropout_rate'] > 0:
out = F.dropout(out, p=self.cfg['dropout_rate'])
out = self.linear(out)
return out
def EfficientNetB0(num_classes=10):
"""EfficientNet-B0"""
return EfficientNet(width_coefficient=1.0,
depth_coefficient=1.0,
dropout_rate=0.2,
num_classes=num_classes)
def EfficientNetB1(num_classes=10):
"""EfficientNet-B1"""
return EfficientNet(width_coefficient=1.0,
depth_coefficient=1.1,
dropout_rate=0.2,
num_classes=num_classes)
def EfficientNetB2(num_classes=10):
"""EfficientNet-B2"""
return EfficientNet(width_coefficient=1.1,
depth_coefficient=1.2,
dropout_rate=0.3,
num_classes=num_classes)
def EfficientNetB3(num_classes=10):
"""EfficientNet-B3"""
return EfficientNet(width_coefficient=1.2,
depth_coefficient=1.4,
dropout_rate=0.3,
num_classes=num_classes)
def EfficientNetB4(num_classes=10):
"""EfficientNet-B4"""
return EfficientNet(width_coefficient=1.4,
depth_coefficient=1.8,
dropout_rate=0.4,
num_classes=num_classes)
def EfficientNetB5(num_classes=10):
"""EfficientNet-B5"""
return EfficientNet(width_coefficient=1.6,
depth_coefficient=2.2,
dropout_rate=0.4,
num_classes=num_classes)
def EfficientNetB6(num_classes=10):
"""EfficientNet-B6"""
return EfficientNet(width_coefficient=1.8,
depth_coefficient=2.6,
dropout_rate=0.5,
num_classes=num_classes)
def EfficientNetB7(num_classes=10):
"""EfficientNet-B7"""
return EfficientNet(width_coefficient=2.0,
depth_coefficient=3.1,
dropout_rate=0.5,
num_classes=num_classes)
def test():
"""测试函数"""
net = EfficientNetB0()
x = torch.randn(1, 3, 32, 32)
y = net(x)
print(y.size())
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (1, 3, 32, 32))
if __name__ == '__main__':
test()