RRFRRF
add some cv models and update readme.md
bdbd148
'''
SENet (Squeeze-and-Excitation Networks) in PyTorch.
SENet通过引入SE模块来自适应地重新校准通道特征响应。SE模块可以集成到现有的网络架构中,
通过显式建模通道之间的相互依赖关系,自适应地重新校准通道特征响应。
主要特点:
1. 引入Squeeze-and-Excitation(SE)模块,增强特征的表示能力
2. SE模块包含squeeze操作(全局平均池化)和excitation操作(两个FC层)
3. 通过attention机制来增强重要通道的权重,抑制不重要通道
4. 几乎可以嵌入到任何现有的网络结构中
Reference:
[1] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
Squeeze-and-Excitation Networks. CVPR 2018.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
"""基础残差块+SE模块
结构:
x -> Conv -> BN -> ReLU -> Conv -> BN -> SE -> (+) -> ReLU
|------------------------------------------|
Args:
in_channels: 输入通道数
channels: 输出通道数
stride: 步长,用于下采样,默认为1
"""
def __init__(self, in_channels, channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
# 残差连接
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channels)
)
# SE模块
self.squeeze = nn.AdaptiveAvgPool2d(1) # 全局平均池化
self.excitation = nn.Sequential(
nn.Conv2d(channels, channels//16, kernel_size=1), # 通道降维
nn.ReLU(inplace=True),
nn.Conv2d(channels//16, channels, kernel_size=1), # 通道升维
nn.Sigmoid() # 归一化到[0,1]
)
def forward(self, x):
# 主分支
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# SE模块
w = self.squeeze(out) # Squeeze
w = self.excitation(w) # Excitation
out = out * w # 特征重标定
# 残差连接
out += self.shortcut(x)
out = F.relu(out)
return out
class PreActBlock(nn.Module):
"""Pre-activation版本的基础块+SE模块
结构:
x -> BN -> ReLU -> Conv -> BN -> ReLU -> Conv -> SE -> (+)
|-------------------------------------------|
Args:
in_channels: 输入通道数
channels: 输出通道数
stride: 步长,用于下采样,默认为1
"""
def __init__(self, in_channels, channels, stride=1):
super(PreActBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False)
# 残差连接
if stride != 1 or in_channels != channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, channels, kernel_size=1, stride=stride, bias=False)
)
# SE模块
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Conv2d(channels, channels//16, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(channels//16, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
# Pre-activation
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
# 主分支
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
# SE模块
w = self.squeeze(out)
w = self.excitation(w)
out = out * w
# 残差连接
out += shortcut
return out
class SENet(nn.Module):
"""SENet模型
网络结构:
1. 一个卷积层进行特征提取
2. 四个残差层,每层包含多个带SE模块的残差块
3. 平均池化和全连接层进行分类
Args:
block: 残差块类型(BasicBlock或PreActBlock)
num_blocks: 每层残差块数量的列表
num_classes: 分类数量,默认为10
"""
def __init__(self, block, num_blocks, num_classes=10):
super(SENet, self).__init__()
self.in_channels = 64
# 第一层卷积
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
# 四个残差层
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# 分类层
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(512, num_classes)
# 初始化权重
self._initialize_weights()
def _make_layer(self, block, channels, num_blocks, stride):
"""构建残差层
Args:
block: 残差块类型
channels: 输出通道数
num_blocks: 残差块数量
stride: 第一个残差块的步长(用于下采样)
Returns:
nn.Sequential: 残差层
"""
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, channels, stride))
self.in_channels = channels
return nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x: 输入张量,[N,3,32,32]
Returns:
out: 输出张量,[N,num_classes]
"""
# 特征提取
out = F.relu(self.bn1(self.conv1(x)))
# 残差层
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
# 分类
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _initialize_weights(self):
"""初始化模型权重
采用kaiming初始化方法:
- 卷积层权重采用kaiming_normal_初始化
- BN层参数采用常数初始化
- 线性层采用正态分布初始化
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def SENet18():
"""SENet-18模型"""
return SENet(PreActBlock, [2,2,2,2])
def test():
"""测试函数"""
# 创建模型
net = SENet18()
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(1,3,32,32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (1,3,32,32))
if __name__ == '__main__':
test()