ttvnet / Image /VGG /code /model.py
RRFRRF
add some cv models and update readme.md
bdbd148
'''
VGG Networks in PyTorch
VGG是由牛津大学Visual Geometry Group提出的一个深度卷积神经网络模型。
主要特点:
1. 使用小卷积核(3x3)代替大卷积核,降低参数量
2. 深层网络结构,多个卷积层叠加
3. 使用多个3x3卷积层的组合来代替大的感受野
4. 结构规整,易于扩展
网络结构示例(VGG16):
input
└─> [(Conv3x3, 64) × 2, MaxPool]
└─> [(Conv3x3, 128) × 2, MaxPool]
└─> [(Conv3x3, 256) × 3, MaxPool]
└─> [(Conv3x3, 512) × 3, MaxPool]
└─> [(Conv3x3, 512) × 3, MaxPool]
└─> [AvgPool, Flatten]
└─> FC(512, num_classes)
参考论文:
[1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition,"
arXiv preprint arXiv:1409.1556, 2014.
'''
import torch
import torch.nn as nn
# VGG配置参数
# M表示MaxPool层,数字表示输出通道数
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class ConvBlock(nn.Module):
"""VGG的基本卷积块
包含: Conv2d -> BatchNorm -> ReLU
使用3x3卷积核,步长为1,padding为1以保持特征图大小不变
Args:
in_channels (int): 输入通道数
out_channels (int): 输出通道数
batch_norm (bool): 是否使用BatchNorm,默认为True
"""
def __init__(self, in_channels, out_channels, batch_norm=True):
super(ConvBlock, self).__init__()
layers = []
# 3x3卷积,padding=1保持特征图大小不变
layers.append(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1
)
)
# 添加BatchNorm
if batch_norm:
layers.append(nn.BatchNorm2d(out_channels))
# ReLU激活函数
layers.append(nn.ReLU(inplace=True))
self.block = nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x (torch.Tensor): 输入特征图
Returns:
torch.Tensor: 输出特征图
"""
return self.block(x)
class VGG(nn.Module):
"""VGG网络模型
Args:
vgg_name (str): VGG变体名称,可选VGG11/13/16/19
num_classes (int): 分类数量,默认为10
batch_norm (bool): 是否使用BatchNorm,默认为True
init_weights (bool): 是否初始化权重,默认为True
"""
def __init__(self, vgg_name='VGG16', num_classes=10, batch_norm=True, init_weights=True):
super(VGG, self).__init__()
# 特征提取层
self.features = self._make_layers(cfg[vgg_name], batch_norm)
# 全局平均池化
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 分类器
self.classifier = nn.Sequential(
nn.Linear(512, num_classes)
)
# 初始化权重
if init_weights:
self._initialize_weights()
def _make_layers(self, cfg, batch_norm=True):
"""构建VGG的特征提取层
Args:
cfg (List): 网络配置参数
batch_norm (bool): 是否使用BatchNorm
Returns:
nn.Sequential: 特征提取层序列
"""
layers = []
in_channels = 3
for x in cfg:
if x == 'M': # 最大池化层
layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
else: # 卷积块
layers.append(ConvBlock(in_channels, x, batch_norm))
in_channels = x
return nn.Sequential(*layers)
def forward(self, x):
"""前向传播
Args:
x (torch.Tensor): 输入图像张量,[N,3,H,W]
Returns:
torch.Tensor: 输出预测张量,[N,num_classes]
"""
# 特征提取
x = self.features(x)
# 全局平均池化
x = self.avgpool(x)
# 展平
x = torch.flatten(x, 1)
# 分类
x = self.classifier(x)
return x
def _initialize_weights(self):
"""初始化模型权重
采用论文中的初始化方法:
- 卷积层: xavier初始化
- BatchNorm: weight=1, bias=0
- 线性层: 正态分布初始化(std=0.01)
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
# VGG论文中使用了xavier初始化
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def test():
"""测试函数
创建VGG模型并进行前向传播测试,打印模型结构和参数信息
"""
# 创建模型
net = VGG('VGG16')
print('Model Structure:')
print(net)
# 测试前向传播
x = torch.randn(2, 3, 32, 32)
y = net(x)
print('\nInput Shape:', x.shape)
print('Output Shape:', y.shape)
# 打印模型信息
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (2, 3, 32, 32))
if __name__ == '__main__':
test()