HUANGYIFEI commited on
Commit
0a705c2
·
verified ·
1 Parent(s): 4309aa3
Graph/GraphMAE_MQ9/lib/__pycache__/metrics.cpython-38.pyc ADDED
Binary file (2.42 kB). View file
 
Graph/GraphMAE_MQ9/lib/metrics.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding:utf-8 -*-
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+
8
+ def masked_mape_np(y_true, y_pred, null_val=np.nan):
9
+ with np.errstate(divide='ignore', invalid='ignore'):
10
+ if np.isnan(null_val):
11
+ mask = ~np.isnan(y_true)
12
+ else:
13
+ mask = np.not_equal(y_true, null_val)
14
+ mask = mask.astype('float32')
15
+ mask /= np.mean(mask)
16
+ mape = np.abs(np.divide(np.subtract(y_pred, y_true).astype('float32'),
17
+ y_true))
18
+ mape = np.nan_to_num(mask * mape)
19
+ return np.mean(mape)
20
+
21
+
22
+ def masked_mse(preds, labels, null_val=np.nan):
23
+ if np.isnan(null_val):
24
+ mask = ~torch.isnan(labels)
25
+ else:
26
+ mask = (labels != null_val)
27
+ mask = mask.float()
28
+ # print(mask.sum())
29
+ # print(mask.shape[0]*mask.shape[1]*mask.shape[2])
30
+ mask /= torch.mean((mask))
31
+ mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
32
+ loss = (preds - labels) ** 2
33
+ loss = loss * mask
34
+ loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
35
+ return torch.mean(loss)
36
+
37
+
38
+ def masked_rmse(preds, labels, null_val=np.nan):
39
+ return torch.sqrt(masked_mse(preds=preds, labels=labels,
40
+ null_val=null_val))
41
+
42
+
43
+ def masked_mae(preds, labels, null_val=np.nan):
44
+ if np.isnan(null_val):
45
+ mask = ~torch.isnan(labels)
46
+ else:
47
+ mask = (labels != null_val)
48
+ mask = mask.float()
49
+ mask /= torch.mean((mask))
50
+ mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
51
+ loss = torch.abs(preds - labels)
52
+ loss = loss * mask
53
+ loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
54
+ return torch.mean(loss)
55
+
56
+
57
+ def masked_mae_test(y_true, y_pred, null_val=np.nan):
58
+ with np.errstate(divide='ignore', invalid='ignore'):
59
+ if np.isnan(null_val):
60
+ mask = ~np.isnan(y_true)
61
+ else:
62
+ mask = np.not_equal(y_true, null_val)
63
+ mask = mask.astype('float32')
64
+ mask /= np.mean(mask)
65
+ mae = np.abs(np.subtract(y_pred, y_true).astype('float32'),
66
+ )
67
+ mae = np.nan_to_num(mask * mae)
68
+ return np.mean(mae)
69
+
70
+
71
+ def masked_rmse_test(y_true, y_pred, null_val=np.nan):
72
+ with np.errstate(divide='ignore', invalid='ignore'):
73
+ if np.isnan(null_val):
74
+ mask = ~np.isnan(y_true)
75
+ else:
76
+ # null_val=null_val
77
+ mask = np.not_equal(y_true, null_val)
78
+ mask = mask.astype('float32')
79
+ mask /= np.mean(mask)
80
+ mse = ((y_pred - y_true) ** 2)
81
+ mse = np.nan_to_num(mask * mse)
82
+ return np.sqrt(np.mean(mse))
83
+
84
+
85
+ def sce_loss(x, y, alpha=3):
86
+ x = F.normalize(x, p=2, dim=-1)
87
+ y = F.normalize(y, p=2, dim=-1)
88
+
89
+ # loss = - (x * y).sum(dim=-1)
90
+ # loss = (x_h - y_h).norm(dim=1).pow(alpha)
91
+
92
+ loss = (1 - (x * y).sum(dim=-1)).pow_(alpha)
93
+
94
+ loss = loss.mean()
95
+ return loss
Graph/GraphMAE_MQ9/lib/utils.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+ import torch.utils.data
5
+ from sklearn.metrics import mean_absolute_error
6
+ from sklearn.metrics import mean_squared_error
7
+ import sys
8
+ project_path = "/content/gdrive//My Drive/CS5248_project"
9
+ sys.path.append(project_path + '/lib')
10
+ from metrics import masked_mape_np
11
+ from scipy.sparse.linalg import eigs
12
+ from metrics import masked_mape_np, masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test
13
+
14
+
15
+ def re_normalization(x, mean, std):
16
+ x = x * std + mean
17
+ return x
18
+
19
+
20
+ def max_min_normalization(x, _max, _min):
21
+ x = 1. * (x - _min)/(_max - _min)
22
+ x = x * 2. - 1.
23
+ return x
24
+
25
+
26
+ def re_max_min_normalization(x, _max, _min):
27
+ x = (x + 1.) / 2.
28
+ x = 1. * x * (_max - _min) + _min
29
+ return x
30
+
31
+
32
+ def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
33
+ '''
34
+ Parameters
35
+ ----------
36
+ distance_df_filename: str, path of the csv file contains edges information
37
+
38
+ num_of_vertices: int, the number of vertices
39
+
40
+ Returns
41
+ ----------
42
+ A: np.ndarray, adjacency matrix
43
+
44
+ '''
45
+ if 'npy' in distance_df_filename:
46
+
47
+ adj_mx = np.load(distance_df_filename)
48
+
49
+ return adj_mx, None
50
+
51
+ else:
52
+
53
+ import csv
54
+
55
+ A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
56
+ dtype=np.float32)
57
+
58
+ distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
59
+ dtype=np.float32)
60
+
61
+ if id_filename:
62
+
63
+ with open(id_filename, 'r') as f:
64
+ id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))} # 把节点id(idx)映射成从0开始的索引
65
+
66
+ with open(distance_df_filename, 'r') as f:
67
+ f.readline()
68
+ reader = csv.reader(f)
69
+ for row in reader:
70
+ if len(row) != 3:
71
+ continue
72
+ i, j, distance = int(row[0]), int(row[1]), float(row[2])
73
+ A[id_dict[i], id_dict[j]] = 1
74
+ distaneA[id_dict[i], id_dict[j]] = distance
75
+ return A, distaneA
76
+
77
+ else:
78
+
79
+ with open(distance_df_filename, 'r') as f:
80
+ f.readline()
81
+ reader = csv.reader(f)
82
+ for row in reader:
83
+ if len(row) != 3:
84
+ continue
85
+ i, j, distance = int(row[0]), int(row[1]), float(row[2])
86
+ A[i, j] = 1
87
+ distaneA[i, j] = distance
88
+ return A, distaneA
89
+
90
+
91
+ def scaled_Laplacian(W):
92
+ '''
93
+ compute \tilde{L}
94
+
95
+ Parameters
96
+ ----------
97
+ W: np.ndarray, shape is (N, N), N is the num of vertices
98
+
99
+ Returns
100
+ ----------
101
+ scaled_Laplacian: np.ndarray, shape (N, N)
102
+
103
+ '''
104
+
105
+ assert W.shape[0] == W.shape[1]
106
+
107
+ D = np.diag(np.sum(W, axis=1))
108
+
109
+ L = D - W
110
+
111
+ lambda_max = eigs(L, k=1, which='LR')[0].real
112
+
113
+ return (2 * L) / lambda_max - np.identity(W.shape[0])
114
+
115
+
116
+ def cheb_polynomial(L_tilde, K):
117
+ '''
118
+ compute a list of chebyshev polynomials from T_0 to T_{K-1}
119
+
120
+ Parameters
121
+ ----------
122
+ L_tilde: scaled Laplacian, np.ndarray, shape (N, N)
123
+
124
+ K: the maximum order of chebyshev polynomials
125
+
126
+ Returns
127
+ ----------
128
+ cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}
129
+
130
+ '''
131
+
132
+ N = L_tilde.shape[0]
133
+
134
+ cheb_polynomials = [np.identity(N), L_tilde.copy()]
135
+
136
+ for i in range(2, K):
137
+ cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])
138
+
139
+ return cheb_polynomials
140
+
141
+
142
+ def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
143
+ '''
144
+ 这个是为PEMS的数据准备的函数
145
+ 将x,y都处理成归一化到[-1,1]之前的数据;
146
+ 每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
147
+ 该函数会把hour, day, week的时间串起来;
148
+ 注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
149
+ 这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
150
+ :param graph_signal_matrix_filename: str
151
+ :param num_of_hours: int
152
+ :param num_of_days: int
153
+ :param num_of_weeks: int
154
+ :param DEVICE:
155
+ :param batch_size: int
156
+ :return:
157
+ three DataLoaders, each dataloader contains:
158
+ test_x_tensor: (B, N_nodes, in_feature, T_input)
159
+ test_decoder_input_tensor: (B, N_nodes, T_output)
160
+ test_target_tensor: (B, N_nodes, T_output)
161
+
162
+ '''
163
+
164
+ file = os.path.basename(graph_signal_matrix_filename).split('.')[0]
165
+
166
+ dirpath = os.path.dirname(graph_signal_matrix_filename)
167
+
168
+ filename = os.path.join(dirpath,
169
+ file) +'_astcgn'
170
+
171
+ print('load file:', filename)
172
+
173
+ file_data = np.load(filename + '.npz')
174
+ train_x = file_data['train_x'] # (10181, 307, 3, 12)
175
+ train_x = train_x[:, :, 0:5, :]
176
+ train_target = file_data['train_target'] # (10181, 307, 12)
177
+
178
+ val_x = file_data['val_x']
179
+ val_x = val_x[:, :, 0:5, :]
180
+ val_target = file_data['val_target']
181
+
182
+ test_x = file_data['test_x']
183
+ test_x = test_x[:, :, 0:5, :]
184
+ test_target = file_data['test_target']
185
+
186
+ mean = file_data['mean'][:, :, 0:5, :] # (1, 1, 3, 1)
187
+ std = file_data['std'][:, :, 0:5, :] # (1, 1, 3, 1)
188
+
189
+ # ------- train_loader -------
190
+ train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
191
+ train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
192
+
193
+ train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)
194
+
195
+ train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
196
+
197
+ # ------- val_loader -------
198
+ val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
199
+ val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
200
+
201
+ val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)
202
+
203
+ val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
204
+
205
+ # ------- test_loader -------
206
+ test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
207
+ test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
208
+
209
+ test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)
210
+
211
+ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
212
+
213
+ # print
214
+ print('train:', train_x_tensor.size(), train_target_tensor.size())
215
+ print('val:', val_x_tensor.size(), val_target_tensor.size())
216
+ print('test:', test_x_tensor.size(), test_target_tensor.size())
217
+
218
+ return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std
219
+
220
+
221
+ def compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag,missing_value,sw, epoch, limit=None):
222
+ '''
223
+ for rnn, compute mean loss on validation set
224
+ :param net: model
225
+ :param val_loader: torch.utils.data.utils.DataLoader
226
+ :param criterion: torch.nn.MSELoss
227
+ :param sw: tensorboardX.SummaryWriter
228
+ :param global_step: int, current global_step
229
+ :param limit: int,
230
+ :return: val_loss
231
+ '''
232
+
233
+ net.train(False) # ensure dropout layers are in evaluation mode
234
+
235
+ with torch.no_grad():
236
+
237
+ val_loader_length = len(val_loader) # nb of batch
238
+
239
+ tmp = [] # 记录了所有batch的loss
240
+
241
+ for batch_index, batch_data in enumerate(val_loader):
242
+ encoder_inputs, labels = batch_data
243
+ outputs = net(encoder_inputs)
244
+ if masked_flag:
245
+ loss = criterion(outputs, labels, missing_value)
246
+ else:
247
+ loss = criterion(outputs, labels)
248
+
249
+ tmp.append(loss.item())
250
+ if batch_index % 100 == 0:
251
+ print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
252
+ if (limit is not None) and batch_index >= limit:
253
+ break
254
+
255
+ validation_loss = sum(tmp) / len(tmp)
256
+ sw.add_scalar('validation_loss', validation_loss, epoch)
257
+ return validation_loss
258
+
259
+
260
+ # def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
261
+ # '''
262
+ # for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
263
+ #
264
+ # :param net: model
265
+ # :param test_loader: torch.utils.data.utils.DataLoader
266
+ # :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
267
+ # :param sw:
268
+ # :param epoch: int, current epoch
269
+ # :param _mean: (1, 1, 3(features), 1)
270
+ # :param _std: (1, 1, 3(features), 1)
271
+ # '''
272
+ #
273
+ # net.train(False) # ensure dropout layers are in test mode
274
+ #
275
+ # with torch.no_grad():
276
+ #
277
+ # test_loader_length = len(test_loader)
278
+ #
279
+ # test_target_tensor = test_target_tensor.cpu().numpy()
280
+ #
281
+ # prediction = [] # 存储所有batch的output
282
+ #
283
+ # for batch_index, batch_data in enumerate(test_loader):
284
+ #
285
+ # encoder_inputs, labels = batch_data
286
+ #
287
+ # outputs = net(encoder_inputs)
288
+ #
289
+ # prediction.append(outputs.detach().cpu().numpy())
290
+ #
291
+ # if batch_index % 100 == 0:
292
+ # print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
293
+ #
294
+ # prediction = np.concatenate(prediction, 0) # (batch, T', 1)
295
+ # prediction_length = prediction.shape[2]
296
+ #
297
+ # for i in range(prediction_length):
298
+ # assert test_target_tensor.shape[0] == prediction.shape[0]
299
+ # print('current epoch: %s, predict %s points' % (epoch, i))
300
+ # mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
301
+ # rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
302
+ # mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
303
+ # print('MAE: %.2f' % (mae))
304
+ # print('RMSE: %.2f' % (rmse))
305
+ # print('MAPE: %.2f' % (mape))
306
+ # print()
307
+ # if sw:
308
+ # sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
309
+ # sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
310
+ # sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)
311
+
312
+
313
+ def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
314
+ '''
315
+
316
+ :param net: nn.Module
317
+ :param data_loader: torch.utils.data.utils.DataLoader
318
+ :param data_target_tensor: tensor
319
+ :param epoch: int
320
+ :param _mean: (1, 1, 3, 1)
321
+ :param _std: (1, 1, 3, 1)
322
+ :param params_path: the path for saving the results
323
+ :return:
324
+ '''
325
+ net.train(False) # ensure dropout layers are in test mode
326
+
327
+ with torch.no_grad():
328
+
329
+ data_target_tensor = data_target_tensor.cpu().numpy()
330
+
331
+ loader_length = len(data_loader) # nb of batch
332
+
333
+ prediction = [] # 存储所有batch的output
334
+
335
+ input = [] # 存储所有batch的input
336
+
337
+ for batch_index, batch_data in enumerate(data_loader):
338
+
339
+ encoder_inputs, labels = batch_data
340
+
341
+ input.append(encoder_inputs[:, :, 0:1].cpu().numpy()) # (batch, T', 1)
342
+
343
+ outputs = net(encoder_inputs)
344
+
345
+ prediction.append(outputs.detach().cpu().numpy())
346
+
347
+ if batch_index % 100 == 0:
348
+ print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))
349
+
350
+ input = np.concatenate(input, 0)
351
+
352
+ input = re_normalization(input, _mean, _std)
353
+
354
+ prediction = np.concatenate(prediction, 0) # (batch, T', 1)
355
+
356
+ print('input:', input.shape)
357
+ print('prediction:', prediction.shape)
358
+ print('data_target_tensor:', data_target_tensor.shape)
359
+ output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
360
+ np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)
361
+
362
+ # 计算误差
363
+ excel_list = []
364
+ prediction_length = prediction.shape[2]
365
+
366
+ for i in range(prediction_length):
367
+ assert data_target_tensor.shape[0] == prediction.shape[0]
368
+ print('current epoch: %s, predict %s points' % (global_step, i))
369
+ if metric_method == 'mask':
370
+ mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
371
+ rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
372
+ mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
373
+ else :
374
+ mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
375
+ rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
376
+ mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
377
+ print('MAE: %.2f' % (mae))
378
+ print('RMSE: %.2f' % (rmse))
379
+ print('MAPE: %.2f' % (mape))
380
+ excel_list.extend([mae, rmse, mape])
381
+
382
+ # print overall results
383
+ if metric_method == 'mask':
384
+ mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
385
+ rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
386
+ mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
387
+ else :
388
+ mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
389
+ rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
390
+ mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
391
+ print('all MAE: %.2f' % (mae))
392
+ print('all RMSE: %.2f' % (rmse))
393
+ print('all MAPE: %.2f' % (mape))
394
+ excel_list.extend([mae, rmse, mape])
395
+ print(excel_list)
396
+
397
+