HUANGYIFEI commited on
Commit
addb4f7
·
verified ·
1 Parent(s): af557de

Delete .virtual_documents

Browse files
Files changed (1) hide show
  1. .virtual_documents/DataInspect.ipynb +0 -237
.virtual_documents/DataInspect.ipynb DELETED
@@ -1,237 +0,0 @@
1
- import os
2
- import time
3
- from rdkit import Chem
4
- from rdkit import RDLogger;
5
- from torch.utils.data import Dataset
6
- import torch.nn.functional as F
7
- from tqdm import tqdm
8
- RDLogger.DisableLog('rdApp.*')
9
- import torch
10
- import torch.nn as nn
11
- import torch.optim as optim
12
- import pickle
13
- import numpy as np
14
- import matplotlib.pyplot as plt
15
- import math
16
- import dgl
17
- import networkx as nx
18
-
19
-
20
- atom_number_index_dict ={
21
- 1:0, # H
22
- 6:1, # C
23
- 7:2, # N
24
- 8:3, # O
25
- 9:4 # F
26
- }
27
- # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
- atom_index_number_dict = {v: k for k, v in atom_number_index_dict.items()}
29
- max_atom_number = max(atom_number_index_dict.keys())
30
- atom_number2index_tensor = torch.full((max_atom_number + 1,), -1)
31
- for k, v in atom_number_index_dict.items():
32
- atom_number2index_tensor[k] = v
33
-
34
- atom_index2number_tensor = torch.tensor([atom_index_number_dict[i] for i in range(len(atom_index_number_dict))])
35
- def atom_number2index(atom_numbers):
36
- return atom_number2index_tensor[atom_numbers]
37
- def atom_index2number(atom_indexes):
38
- return atom_index2number_tensor[atom_indexes]
39
-
40
-
41
- from dgl.data import QM9Dataset
42
- from torch.utils.data import SubsetRandomSampler
43
- from dgl.dataloading import GraphDataLoader
44
- from multiprocessing import Pool
45
-
46
- dataset = QM9Dataset(label_keys=['mu', 'gap'], cutoff=5.0)
47
- dataset_length = len(dataset)
48
- train_idx = torch.arange(dataset_length)
49
- # def preprocess_graph(data):
50
- # g, label = data
51
- # g.ndata["Z_index"] = atom_number2index(g.ndata["Z"])
52
- # return g, label
53
-
54
- # def preprocess_dataset(dataset):
55
- # with Pool(processes=4) as pool: # 设置进程数
56
- # with tqdm(total=len(dataset)) as pbar: # 初始化进度条
57
- # results = []
58
- # for result in pool.imap(preprocess_graph, dataset): # 使用 imap 逐步处理
59
- # results.append(result)
60
- # pbar.update(1) # 更新进度条
61
- # return results
62
-
63
- # # 使用多进程预处理数据集
64
- # dataset = preprocess_dataset(dataset)
65
-
66
- # def collate_fn(batch):
67
- # # print(batch)
68
- # graphs, labels = map(list, zip(*batch))
69
- # for g in graphs:
70
- # pass
71
- # # g.ndata["Z_index"] = atom_number2index(g.ndata["Z"])
72
- # # g.ndata["R"]->the coordinates of each atom[num_nodes,3], g.ndata["Z"]->the atomic number(H:1,C:6) [num_nodes]
73
- # # g.ndata["Z_index"] = torch.tensor([atom_number2index(z.item()) for z in g.ndata["Z"]])
74
- # batched_graph = dgl.batch(graphs)
75
- # return batched_graph, torch.stack(labels)
76
- myGLoader = GraphDataLoader(dataset,batch_size=32,pin_memory=True,num_workers=8)
77
-
78
-
79
- # for batch in tqdm(myGLoader):
80
- # pass
81
- # # print(batch)
82
-
83
-
84
-
85
- from functools import partial
86
- import sys
87
- sys.path.append("lib")
88
- from lib.metrics import sce_loss
89
-
90
- class GMae(nn.Module):
91
- def __init__(self, encoder,decoder,
92
- in_dim,hidden_dim,out_dim,mask_rate=0.3,replace_rate=0.1,alpha_l=2,
93
- embedding_layer_classes=5,embedding_layer_dim=4):
94
- super(GMae, self).__init__()
95
- self.Z_embedding = nn.Embedding(embedding_layer_classes,embedding_layer_dim)
96
- self.encoder = encoder
97
- self.decoder = decoder
98
- self.mask_rate = mask_rate
99
- self.replace_rate = replace_rate
100
- self.alpha_l = alpha_l
101
- self.in_dim = in_dim
102
- self.hidden_dim = hidden_dim
103
- self.out_dim = out_dim
104
- self.embedding_layer_classes = embedding_layer_classes
105
- self.embedding_layer_dim = embedding_layer_dim
106
- self.enc_mask_token = nn.Parameter(torch.zeros(1,in_dim))
107
- self.criterion = partial(sce_loss, alpha=alpha_l)
108
- self.encoder_to_decoder = nn.Linear(hidden_dim, hidden_dim, bias=False)
109
- def encode_atom_index(self,Z_index):
110
- return self.Z_embedding(Z_index)
111
- def encoding_mask_noise(self, g, x, mask_rate=0.3):
112
- num_nodes = g.num_nodes()
113
- perm = torch.randperm(num_nodes, device=x.device)
114
- # random masking
115
- num_mask_nodes = int(mask_rate * num_nodes)
116
- mask_nodes = perm[: num_mask_nodes]
117
- keep_nodes = perm[num_mask_nodes: ]
118
-
119
- if self.replace_rate > 0:
120
- num_noise_nodes = int(self.replace_rate * num_mask_nodes)
121
- perm_mask = torch.randperm(num_mask_nodes, device=x.device)
122
- token_nodes = mask_nodes[perm_mask[: int((1-self.replace_rate) * num_mask_nodes)]]
123
- noise_nodes = mask_nodes[perm_mask[-int(self.replace_rate * num_mask_nodes):]]
124
- noise_to_be_chosen = torch.randperm(num_nodes, device=x.device)[:num_noise_nodes]
125
- out_x = x.clone()
126
- out_x[token_nodes] = 0.0
127
- out_x[noise_nodes] = x[noise_to_be_chosen]
128
- else:
129
- out_x = x.clone()
130
- token_nodes = mask_nodes
131
- out_x[mask_nodes] = 0.0
132
-
133
- out_x[token_nodes] += self.enc_mask_token
134
- use_g = g.clone()
135
-
136
- return use_g, out_x, (mask_nodes, keep_nodes)
137
- def mask_attr_prediction(self, g, x):
138
- use_g, use_x, (mask_nodes, keep_nodes) = self.encoding_mask_noise(g, x, self.mask_rate)
139
- enc_rep = self.encoder(use_g, use_x)
140
- # ---- attribute reconstruction ----
141
- rep = self.encoder_to_decoder(enc_rep)
142
- recon = self.decoder(use_g, rep)
143
- x_init = x[mask_nodes]
144
- x_rec = recon[mask_nodes]
145
- loss = self.criterion(x_rec, x_init)
146
- return loss
147
-
148
- def embed(self, g, x):
149
- rep = self.encoder(g, x)
150
- return rep
151
-
152
-
153
-
154
- import dgl.nn as dglnn
155
- import torch.nn as nn
156
- import torch.nn.functional as F
157
- class SimpleGNN(nn.Module):
158
- def __init__(self, in_feats, hid_feats, out_feats):
159
- super().__init__()
160
- self.conv1 = dglnn.SAGEConv(
161
- in_feats=in_feats, out_feats=hid_feats,aggregator_type="mean")
162
- self.conv2 = dglnn.SAGEConv(
163
- in_feats=hid_feats, out_feats=out_feats,aggregator_type="mean")
164
-
165
- def forward(self, graph, inputs):
166
- # 输入是节点的特征
167
- h = self.conv1(graph, inputs)
168
- h = F.relu(h)
169
- h = self.conv2(graph, h)
170
- return h
171
-
172
-
173
- sage_enc = SimpleGNN(in_feats=7,hid_feats=4,out_feats=4)
174
- sage_dec = SimpleGNN(in_feats=4,hid_feats=4,out_feats=7)
175
- gmae = GMae(sage_enc,sage_dec,7,4,7,replace_rate=0)
176
- epoches = 20
177
- optimizer = optim.Adam(gmae.parameters(), lr=1e-3)
178
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
179
-
180
-
181
- print(f"epoch {0} started!")
182
- gmae.train()
183
- gmae.encoder.train()
184
- gmae.decoder.train()
185
- gmae.to(device)
186
- loss_epoch = 0
187
- import os
188
- os.environ["CUDA_LAUNCH_BLOCKING"]="1"
189
- for batch in tqdm(myGLoader):
190
- optimizer.zero_grad()
191
- batch_g, _ = batch
192
- R = batch_g.ndata["R"].to(device)
193
- Z_index = batch_g.ndata["Z"].to(device)
194
- Z_emb = gmae.encode_atom_index(Z_index)
195
- # feat = torch.cat([R,Z_emb],dim=1)
196
- # batch_g = batch_g.to(device)
197
- # loss = gmae.mask_attr_prediction(batch_g, feat)
198
- # loss.backward()
199
- # optimizer.step()
200
- # loss_epoch+=loss.item()
201
-
202
-
203
-
204
- from datetime import datetime
205
-
206
- current_time = datetime.now().strftime("%m-%d@%H_%M")
207
- best_loss = 10000
208
- for epoch in range(epoches):
209
- print(f"epoch {epoch} started!")
210
- gmae.train()
211
- gmae.encoder.train()
212
- gmae.decoder.train()
213
- gmae.to(device)
214
- loss_epoch = 0
215
- for batch in myGLoader:
216
- optimizer.zero_grad()
217
- batch_g, _ = batch
218
- R = batch_g.ndata["R"].to(device)
219
- # Z_index = batch_g.ndata["Z_index"].to(device)
220
- Z_index = batch_g.ndata["Z_index"].to(device)
221
- Z_emb = gmae.encode_atom_index(Z_index)
222
- feat = torch.cat([R,Z_emb],dim=1)
223
- batch_g = batch_g.to(device)
224
- loss = gmae.mask_attr_prediction(batch_g, feat)
225
- loss.backward()
226
- optimizer.step()
227
- loss_epoch+=loss.item()
228
- if loss_epoch < best_loss:
229
- formatted_loss_epoch = f"{loss_epoch:.3f}"
230
- save_path = f"./experiments/consumption/gmae/{current_time}/gmae_epoch-{epoch}-{formatted_loss_epoch}.pt"
231
- save_dir = os.path.dirname(save_path)
232
- if not os.path.exists(save_dir):
233
- os.makedirs(save_dir,exist_ok=True)
234
- torch.save(gmae.state_dict(), save_path)
235
- best_loss = loss_epoch
236
- print(f"best model saved-loss:{formatted_loss_epoch}-save_path:{save_path}")
237
- print(f"epoch {epoch}: loss {loss_epoch}")