HUANGYIFEI commited on
Commit
b500f26
1 Parent(s): 162dfd4

Delete Graph/GraphMAE_MQ9

Browse files
Graph/GraphMAE_MQ9/QM9_dataset_class.py DELETED
@@ -1,51 +0,0 @@
1
- import os
2
-
3
- from tqdm import tqdm
4
- import networkx as nx
5
- import torch
6
- from torch.utils.data import Dataset
7
-
8
- atom_number_index_dict = {
9
- 1: 0, # H
10
- 6: 1, # C
11
- 7: 2, # N
12
- 8: 3, # O
13
- 9: 4 # F
14
- }
15
- atom_index_number_dict = {v: k for k, v in atom_number_index_dict.items()}
16
- max_atom_number = max(atom_number_index_dict.keys())
17
-
18
-
19
- def atom_number2index(atom_number):
20
- return atom_number_index_dict[atom_number]
21
-
22
-
23
- def atom_index2number(atom_index):
24
- return atom_index_number_dict[atom_index]
25
-
26
-
27
- class PreprocessedQM9Dataset(Dataset):
28
- def __init__(self, dataset):
29
- self.dataset = dataset
30
- self.processed_data = []
31
- if dataset is not None:
32
- self._preprocess()
33
- def _preprocess(self):
34
- i = 0
35
- for g, label in tqdm(self.dataset):
36
- g.ndata["Z_index"] = torch.tensor([atom_number2index(z.item()) for z in g.ndata["Z"]])
37
- g.ndata["sample_idx"] = i
38
- self.processed_data.append((g, label))
39
-
40
- def __len__(self):
41
- return len(self.processed_data)
42
-
43
- def __getitem__(self, idx):
44
- return self.processed_data[idx]
45
-
46
- def save_dataset(self, save_dir):
47
- if not os.path.exists(save_dir):
48
- os.makedirs(save_dir)
49
- torch.save(self.processed_data, os.path.join(save_dir,"QM9_dataset_processed.pt"))
50
- def load_dataset(self, dataset_path):
51
- self.processed_data = torch.load(dataset_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph/GraphMAE_MQ9/README.md DELETED
@@ -1,43 +0,0 @@
1
- # Graph Mask AutoEncoder(GraphMAE) on QM9 Dataset
2
- ## Overview
3
- We run the **Graph Mask AutoEncoder** on **QM9 Dataset** for pretraining. We use the atom position of each atom and the embedding of their element type as the input feature (dim=7) and predict the input feature by using the GraphSage with 4-dim hidden representation.
4
-
5
- **Total Epochs: 10**
6
- ## How to run
7
- ### If you do not want to re-train the model again
8
- - **Unzip the model.zip** to get the model weight & embedded graph in each epoch
9
- ### If you want to try out the training process
10
- - step1. **Preprocess the dataset** (we have provided the preprocessed as well)
11
-
12
- ```bash
13
- python prepare_QM9_dataset.py --label_keys "mu" "gap"
14
- ```
15
- - step2. **Train the Graph Mask AutoEncoder on the preprocessed dataset**
16
- ```bash
17
- python run.py [--dataset_path] [--batch_size] [--epochs] [--device] [--save_dir]
18
- ```
19
-
20
- ## Model Description
21
- ### Overview
22
- Ref:**[GraphMAE](https://arxiv.org/abs/2205.10803)**
23
- >Self-supervised learning (SSL) has been extensively explored in recent years. Particularly, generative SSL has seen emerging success in natural language processing and other AI fields, such as the wide adoption of BERT and GPT. Despite this, contrastive learning-which heavily relies on structural data augmentation and complicated training strategies-has been the dominant approach in graph SSL, while the progress of generative SSL on graphs, especially graph autoencoders (GAEs), has thus far not reached the potential as promised in other fields. In this paper, we identify and examine the issues that negatively impact the development of GAEs, including their reconstruction objective, training robustness, and error metric. We present a masked graph autoencoder GraphMAE that mitigates these issues for generative self-supervised graph pretraining. Instead of reconstructing graph structures, we propose to focus on feature reconstruction with both a masking strategy and scaled cosine error that benefit the robust training of GraphMAE. We conduct extensive experiments on 21 public datasets for three different graph learning tasks. The results manifest that GraphMAE-a simple graph autoencoder with careful designs-can consistently generate outperformance over both contrastive and generative state-of-the-art baselines. This study provides an understanding of graph autoencoders and demonstrates the potential of generative self-supervised pre-training on graphs.
24
-
25
- ### Detail
26
- Encoder & Decoder: Two layer [GraphSage](https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.SAGEConv.html)
27
-
28
- Readout Method: Mean
29
-
30
- HiddenDims: 4 (Default)
31
-
32
- MaskRate: 0.3 (Default)
33
-
34
- Training on RTX 4060
35
-
36
- ## Dataset Description
37
- ### Overview
38
- Ref: **[QM9](https://docs.dgl.ai/generated/dgl.data.QM9Dataset.html)**
39
- > Type: Molecule property prediction
40
- >
41
- > Sample_num: 130831
42
- >
43
- > Total Elements: H,C,N,O,F
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph/GraphMAE_MQ9/dataset/QM9_dataset_processed.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7612e207a9e51ea55a93b3c09bc18416d0dfb8542713b82ebce8bcc95e76184f
3
- size 678132504
 
 
 
 
Graph/GraphMAE_MQ9/lib/__pycache__/metrics.cpython-38.pyc DELETED
Binary file (2.42 kB)
 
Graph/GraphMAE_MQ9/lib/metrics.py DELETED
@@ -1,95 +0,0 @@
1
- # -*- coding:utf-8 -*-
2
-
3
- import numpy as np
4
- import torch
5
- import torch.nn.functional as F
6
-
7
-
8
- def masked_mape_np(y_true, y_pred, null_val=np.nan):
9
- with np.errstate(divide='ignore', invalid='ignore'):
10
- if np.isnan(null_val):
11
- mask = ~np.isnan(y_true)
12
- else:
13
- mask = np.not_equal(y_true, null_val)
14
- mask = mask.astype('float32')
15
- mask /= np.mean(mask)
16
- mape = np.abs(np.divide(np.subtract(y_pred, y_true).astype('float32'),
17
- y_true))
18
- mape = np.nan_to_num(mask * mape)
19
- return np.mean(mape)
20
-
21
-
22
- def masked_mse(preds, labels, null_val=np.nan):
23
- if np.isnan(null_val):
24
- mask = ~torch.isnan(labels)
25
- else:
26
- mask = (labels != null_val)
27
- mask = mask.float()
28
- # print(mask.sum())
29
- # print(mask.shape[0]*mask.shape[1]*mask.shape[2])
30
- mask /= torch.mean((mask))
31
- mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
32
- loss = (preds - labels) ** 2
33
- loss = loss * mask
34
- loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
35
- return torch.mean(loss)
36
-
37
-
38
- def masked_rmse(preds, labels, null_val=np.nan):
39
- return torch.sqrt(masked_mse(preds=preds, labels=labels,
40
- null_val=null_val))
41
-
42
-
43
- def masked_mae(preds, labels, null_val=np.nan):
44
- if np.isnan(null_val):
45
- mask = ~torch.isnan(labels)
46
- else:
47
- mask = (labels != null_val)
48
- mask = mask.float()
49
- mask /= torch.mean((mask))
50
- mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
51
- loss = torch.abs(preds - labels)
52
- loss = loss * mask
53
- loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
54
- return torch.mean(loss)
55
-
56
-
57
- def masked_mae_test(y_true, y_pred, null_val=np.nan):
58
- with np.errstate(divide='ignore', invalid='ignore'):
59
- if np.isnan(null_val):
60
- mask = ~np.isnan(y_true)
61
- else:
62
- mask = np.not_equal(y_true, null_val)
63
- mask = mask.astype('float32')
64
- mask /= np.mean(mask)
65
- mae = np.abs(np.subtract(y_pred, y_true).astype('float32'),
66
- )
67
- mae = np.nan_to_num(mask * mae)
68
- return np.mean(mae)
69
-
70
-
71
- def masked_rmse_test(y_true, y_pred, null_val=np.nan):
72
- with np.errstate(divide='ignore', invalid='ignore'):
73
- if np.isnan(null_val):
74
- mask = ~np.isnan(y_true)
75
- else:
76
- # null_val=null_val
77
- mask = np.not_equal(y_true, null_val)
78
- mask = mask.astype('float32')
79
- mask /= np.mean(mask)
80
- mse = ((y_pred - y_true) ** 2)
81
- mse = np.nan_to_num(mask * mse)
82
- return np.sqrt(np.mean(mse))
83
-
84
-
85
- def sce_loss(x, y, alpha=3):
86
- x = F.normalize(x, p=2, dim=-1)
87
- y = F.normalize(y, p=2, dim=-1)
88
-
89
- # loss = - (x * y).sum(dim=-1)
90
- # loss = (x_h - y_h).norm(dim=1).pow(alpha)
91
-
92
- loss = (1 - (x * y).sum(dim=-1)).pow_(alpha)
93
-
94
- loss = loss.mean()
95
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph/GraphMAE_MQ9/lib/utils.py DELETED
@@ -1,397 +0,0 @@
1
- import os
2
- import numpy as np
3
- import torch
4
- import torch.utils.data
5
- from sklearn.metrics import mean_absolute_error
6
- from sklearn.metrics import mean_squared_error
7
- import sys
8
- project_path = "/content/gdrive//My Drive/CS5248_project"
9
- sys.path.append(project_path + '/lib')
10
- from metrics import masked_mape_np
11
- from scipy.sparse.linalg import eigs
12
- from metrics import masked_mape_np, masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test
13
-
14
-
15
- def re_normalization(x, mean, std):
16
- x = x * std + mean
17
- return x
18
-
19
-
20
- def max_min_normalization(x, _max, _min):
21
- x = 1. * (x - _min)/(_max - _min)
22
- x = x * 2. - 1.
23
- return x
24
-
25
-
26
- def re_max_min_normalization(x, _max, _min):
27
- x = (x + 1.) / 2.
28
- x = 1. * x * (_max - _min) + _min
29
- return x
30
-
31
-
32
- def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
33
- '''
34
- Parameters
35
- ----------
36
- distance_df_filename: str, path of the csv file contains edges information
37
-
38
- num_of_vertices: int, the number of vertices
39
-
40
- Returns
41
- ----------
42
- A: np.ndarray, adjacency matrix
43
-
44
- '''
45
- if 'npy' in distance_df_filename:
46
-
47
- adj_mx = np.load(distance_df_filename)
48
-
49
- return adj_mx, None
50
-
51
- else:
52
-
53
- import csv
54
-
55
- A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
56
- dtype=np.float32)
57
-
58
- distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
59
- dtype=np.float32)
60
-
61
- if id_filename:
62
-
63
- with open(id_filename, 'r') as f:
64
- id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))} # 把节点id(idx)映射成从0开始的索引
65
-
66
- with open(distance_df_filename, 'r') as f:
67
- f.readline()
68
- reader = csv.reader(f)
69
- for row in reader:
70
- if len(row) != 3:
71
- continue
72
- i, j, distance = int(row[0]), int(row[1]), float(row[2])
73
- A[id_dict[i], id_dict[j]] = 1
74
- distaneA[id_dict[i], id_dict[j]] = distance
75
- return A, distaneA
76
-
77
- else:
78
-
79
- with open(distance_df_filename, 'r') as f:
80
- f.readline()
81
- reader = csv.reader(f)
82
- for row in reader:
83
- if len(row) != 3:
84
- continue
85
- i, j, distance = int(row[0]), int(row[1]), float(row[2])
86
- A[i, j] = 1
87
- distaneA[i, j] = distance
88
- return A, distaneA
89
-
90
-
91
- def scaled_Laplacian(W):
92
- '''
93
- compute \tilde{L}
94
-
95
- Parameters
96
- ----------
97
- W: np.ndarray, shape is (N, N), N is the num of vertices
98
-
99
- Returns
100
- ----------
101
- scaled_Laplacian: np.ndarray, shape (N, N)
102
-
103
- '''
104
-
105
- assert W.shape[0] == W.shape[1]
106
-
107
- D = np.diag(np.sum(W, axis=1))
108
-
109
- L = D - W
110
-
111
- lambda_max = eigs(L, k=1, which='LR')[0].real
112
-
113
- return (2 * L) / lambda_max - np.identity(W.shape[0])
114
-
115
-
116
- def cheb_polynomial(L_tilde, K):
117
- '''
118
- compute a list of chebyshev polynomials from T_0 to T_{K-1}
119
-
120
- Parameters
121
- ----------
122
- L_tilde: scaled Laplacian, np.ndarray, shape (N, N)
123
-
124
- K: the maximum order of chebyshev polynomials
125
-
126
- Returns
127
- ----------
128
- cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}
129
-
130
- '''
131
-
132
- N = L_tilde.shape[0]
133
-
134
- cheb_polynomials = [np.identity(N), L_tilde.copy()]
135
-
136
- for i in range(2, K):
137
- cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])
138
-
139
- return cheb_polynomials
140
-
141
-
142
- def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
143
- '''
144
- 这个是为PEMS的数据准备的函数
145
- 将x,y都处理成归一化到[-1,1]之前的数据;
146
- 每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
147
- 该函数会把hour, day, week的时间串起来;
148
- 注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
149
- 这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
150
- :param graph_signal_matrix_filename: str
151
- :param num_of_hours: int
152
- :param num_of_days: int
153
- :param num_of_weeks: int
154
- :param DEVICE:
155
- :param batch_size: int
156
- :return:
157
- three DataLoaders, each dataloader contains:
158
- test_x_tensor: (B, N_nodes, in_feature, T_input)
159
- test_decoder_input_tensor: (B, N_nodes, T_output)
160
- test_target_tensor: (B, N_nodes, T_output)
161
-
162
- '''
163
-
164
- file = os.path.basename(graph_signal_matrix_filename).split('.')[0]
165
-
166
- dirpath = os.path.dirname(graph_signal_matrix_filename)
167
-
168
- filename = os.path.join(dirpath,
169
- file) +'_astcgn'
170
-
171
- print('load file:', filename)
172
-
173
- file_data = np.load(filename + '.npz')
174
- train_x = file_data['train_x'] # (10181, 307, 3, 12)
175
- train_x = train_x[:, :, 0:5, :]
176
- train_target = file_data['train_target'] # (10181, 307, 12)
177
-
178
- val_x = file_data['val_x']
179
- val_x = val_x[:, :, 0:5, :]
180
- val_target = file_data['val_target']
181
-
182
- test_x = file_data['test_x']
183
- test_x = test_x[:, :, 0:5, :]
184
- test_target = file_data['test_target']
185
-
186
- mean = file_data['mean'][:, :, 0:5, :] # (1, 1, 3, 1)
187
- std = file_data['std'][:, :, 0:5, :] # (1, 1, 3, 1)
188
-
189
- # ------- train_loader -------
190
- train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
191
- train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
192
-
193
- train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)
194
-
195
- train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
196
-
197
- # ------- val_loader -------
198
- val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
199
- val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
200
-
201
- val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)
202
-
203
- val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
204
-
205
- # ------- test_loader -------
206
- test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
207
- test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
208
-
209
- test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)
210
-
211
- test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
212
-
213
- # print
214
- print('train:', train_x_tensor.size(), train_target_tensor.size())
215
- print('val:', val_x_tensor.size(), val_target_tensor.size())
216
- print('test:', test_x_tensor.size(), test_target_tensor.size())
217
-
218
- return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std
219
-
220
-
221
- def compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag,missing_value,sw, epoch, limit=None):
222
- '''
223
- for rnn, compute mean loss on validation set
224
- :param net: model
225
- :param val_loader: torch.utils.data.utils.DataLoader
226
- :param criterion: torch.nn.MSELoss
227
- :param sw: tensorboardX.SummaryWriter
228
- :param global_step: int, current global_step
229
- :param limit: int,
230
- :return: val_loss
231
- '''
232
-
233
- net.train(False) # ensure dropout layers are in evaluation mode
234
-
235
- with torch.no_grad():
236
-
237
- val_loader_length = len(val_loader) # nb of batch
238
-
239
- tmp = [] # 记录了所有batch的loss
240
-
241
- for batch_index, batch_data in enumerate(val_loader):
242
- encoder_inputs, labels = batch_data
243
- outputs = net(encoder_inputs)
244
- if masked_flag:
245
- loss = criterion(outputs, labels, missing_value)
246
- else:
247
- loss = criterion(outputs, labels)
248
-
249
- tmp.append(loss.item())
250
- if batch_index % 100 == 0:
251
- print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
252
- if (limit is not None) and batch_index >= limit:
253
- break
254
-
255
- validation_loss = sum(tmp) / len(tmp)
256
- sw.add_scalar('validation_loss', validation_loss, epoch)
257
- return validation_loss
258
-
259
-
260
- # def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
261
- # '''
262
- # for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
263
- #
264
- # :param net: model
265
- # :param test_loader: torch.utils.data.utils.DataLoader
266
- # :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
267
- # :param sw:
268
- # :param epoch: int, current epoch
269
- # :param _mean: (1, 1, 3(features), 1)
270
- # :param _std: (1, 1, 3(features), 1)
271
- # '''
272
- #
273
- # net.train(False) # ensure dropout layers are in test mode
274
- #
275
- # with torch.no_grad():
276
- #
277
- # test_loader_length = len(test_loader)
278
- #
279
- # test_target_tensor = test_target_tensor.cpu().numpy()
280
- #
281
- # prediction = [] # 存储所有batch的output
282
- #
283
- # for batch_index, batch_data in enumerate(test_loader):
284
- #
285
- # encoder_inputs, labels = batch_data
286
- #
287
- # outputs = net(encoder_inputs)
288
- #
289
- # prediction.append(outputs.detach().cpu().numpy())
290
- #
291
- # if batch_index % 100 == 0:
292
- # print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
293
- #
294
- # prediction = np.concatenate(prediction, 0) # (batch, T', 1)
295
- # prediction_length = prediction.shape[2]
296
- #
297
- # for i in range(prediction_length):
298
- # assert test_target_tensor.shape[0] == prediction.shape[0]
299
- # print('current epoch: %s, predict %s points' % (epoch, i))
300
- # mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
301
- # rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
302
- # mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
303
- # print('MAE: %.2f' % (mae))
304
- # print('RMSE: %.2f' % (rmse))
305
- # print('MAPE: %.2f' % (mape))
306
- # print()
307
- # if sw:
308
- # sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
309
- # sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
310
- # sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)
311
-
312
-
313
- def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
314
- '''
315
-
316
- :param net: nn.Module
317
- :param data_loader: torch.utils.data.utils.DataLoader
318
- :param data_target_tensor: tensor
319
- :param epoch: int
320
- :param _mean: (1, 1, 3, 1)
321
- :param _std: (1, 1, 3, 1)
322
- :param params_path: the path for saving the results
323
- :return:
324
- '''
325
- net.train(False) # ensure dropout layers are in test mode
326
-
327
- with torch.no_grad():
328
-
329
- data_target_tensor = data_target_tensor.cpu().numpy()
330
-
331
- loader_length = len(data_loader) # nb of batch
332
-
333
- prediction = [] # 存储所有batch的output
334
-
335
- input = [] # 存储所有batch的input
336
-
337
- for batch_index, batch_data in enumerate(data_loader):
338
-
339
- encoder_inputs, labels = batch_data
340
-
341
- input.append(encoder_inputs[:, :, 0:1].cpu().numpy()) # (batch, T', 1)
342
-
343
- outputs = net(encoder_inputs)
344
-
345
- prediction.append(outputs.detach().cpu().numpy())
346
-
347
- if batch_index % 100 == 0:
348
- print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))
349
-
350
- input = np.concatenate(input, 0)
351
-
352
- input = re_normalization(input, _mean, _std)
353
-
354
- prediction = np.concatenate(prediction, 0) # (batch, T', 1)
355
-
356
- print('input:', input.shape)
357
- print('prediction:', prediction.shape)
358
- print('data_target_tensor:', data_target_tensor.shape)
359
- output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
360
- np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)
361
-
362
- # 计算误差
363
- excel_list = []
364
- prediction_length = prediction.shape[2]
365
-
366
- for i in range(prediction_length):
367
- assert data_target_tensor.shape[0] == prediction.shape[0]
368
- print('current epoch: %s, predict %s points' % (global_step, i))
369
- if metric_method == 'mask':
370
- mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
371
- rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
372
- mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
373
- else :
374
- mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
375
- rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
376
- mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
377
- print('MAE: %.2f' % (mae))
378
- print('RMSE: %.2f' % (rmse))
379
- print('MAPE: %.2f' % (mape))
380
- excel_list.extend([mae, rmse, mape])
381
-
382
- # print overall results
383
- if metric_method == 'mask':
384
- mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
385
- rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
386
- mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
387
- else :
388
- mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
389
- rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
390
- mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
391
- print('all MAE: %.2f' % (mae))
392
- print('all RMSE: %.2f' % (rmse))
393
- print('all MAPE: %.2f' % (mape))
394
- excel_list.extend([mae, rmse, mape])
395
- print(excel_list)
396
-
397
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph/GraphMAE_MQ9/model.py DELETED
@@ -1,90 +0,0 @@
1
- from functools import partial
2
- import sys
3
-
4
- sys.path.append("lib")
5
- from lib.metrics import sce_loss
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
- import dgl.nn as dglnn
10
-
11
-
12
- class GMae(nn.Module):
13
- def __init__(self, encoder, decoder,
14
- in_dim, hidden_dim, out_dim, mask_rate=0.3, replace_rate=0.1, alpha_l=2,
15
- embedding_layer_classes=5, embedding_layer_dim=4):
16
- super(GMae, self).__init__()
17
- self.Z_embedding = nn.Embedding(embedding_layer_classes, embedding_layer_dim)
18
- self.encoder = encoder
19
- self.decoder = decoder
20
- self.mask_rate = mask_rate
21
- self.replace_rate = replace_rate
22
- self.alpha_l = alpha_l
23
- self.in_dim = in_dim
24
- self.hidden_dim = hidden_dim
25
- self.out_dim = out_dim
26
- self.embedding_layer_classes = embedding_layer_classes
27
- self.embedding_layer_dim = embedding_layer_dim
28
- self.enc_mask_token = nn.Parameter(torch.zeros(1, in_dim))
29
- self.criterion = partial(sce_loss, alpha=alpha_l)
30
- self.encoder_to_decoder = nn.Linear(hidden_dim, hidden_dim, bias=False)
31
-
32
- def encode_atom_index(self, Z_index):
33
- return self.Z_embedding(Z_index)
34
-
35
- def encoding_mask_noise(self, g, x, mask_rate=0.3):
36
- num_nodes = g.num_nodes()
37
- perm = torch.randperm(num_nodes, device=x.device)
38
- # random masking
39
- num_mask_nodes = int(mask_rate * num_nodes)
40
- mask_nodes = perm[: num_mask_nodes]
41
- keep_nodes = perm[num_mask_nodes:]
42
-
43
- if self.replace_rate > 0:
44
- num_noise_nodes = int(self.replace_rate * num_mask_nodes)
45
- perm_mask = torch.randperm(num_mask_nodes, device=x.device)
46
- token_nodes = mask_nodes[perm_mask[: int((1 - self.replace_rate) * num_mask_nodes)]]
47
- noise_nodes = mask_nodes[perm_mask[-int(self.replace_rate * num_mask_nodes):]]
48
- noise_to_be_chosen = torch.randperm(num_nodes, device=x.device)[:num_noise_nodes]
49
- out_x = x.clone()
50
- out_x[token_nodes] = 0.0
51
- out_x[noise_nodes] = x[noise_to_be_chosen]
52
- else:
53
- out_x = x.clone()
54
- token_nodes = mask_nodes
55
- out_x[mask_nodes] = 0.0
56
-
57
- out_x[token_nodes] += self.enc_mask_token
58
- use_g = g.clone()
59
-
60
- return use_g, out_x, (mask_nodes, keep_nodes)
61
-
62
- def mask_attr_prediction(self, g, x):
63
- use_g, use_x, (mask_nodes, keep_nodes) = self.encoding_mask_noise(g, x, self.mask_rate)
64
- enc_rep = self.encoder(use_g, use_x)
65
- # ---- attribute reconstruction ----
66
- rep = self.encoder_to_decoder(enc_rep)
67
- recon = self.decoder(use_g, rep)
68
- x_init = x[mask_nodes]
69
- x_rec = recon[mask_nodes]
70
- loss = self.criterion(x_rec, x_init)
71
- return loss
72
-
73
- def embed(self, g, x):
74
- rep = self.encoder(g, x)
75
- return rep
76
-
77
-
78
- class SimpleGnn(nn.Module):
79
- def __init__(self, in_feats, hid_feats, out_feats):
80
- super().__init__()
81
- self.conv1 = dglnn.SAGEConv(
82
- in_feats=in_feats, out_feats=hid_feats, aggregator_type="mean")
83
- self.conv2 = dglnn.SAGEConv(
84
- in_feats=hid_feats, out_feats=out_feats, aggregator_type="mean")
85
-
86
- def forward(self, graph, inputs):
87
- h = self.conv1(graph, inputs)
88
- h = F.relu(h)
89
- h = self.conv2(graph, h)
90
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph/GraphMAE_MQ9/model.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4dc234d0ebd9a2139defb027ef9e97cdfdc1b2ebb89b3b26ae664f014b3831de
3
- size 2880397447
 
 
 
 
Graph/GraphMAE_MQ9/prepare_QM9_dataset.py DELETED
@@ -1,48 +0,0 @@
1
- import argparse
2
- import os
3
- import time
4
-
5
- from dgl.data import QM9Dataset
6
- from dgl.dataloading import GraphDataLoader
7
- from rdkit import Chem
8
- from rdkit import RDLogger;
9
- from torch.utils.data import Dataset
10
- import torch.nn.functional as F
11
- from tqdm import tqdm
12
- import ast
13
-
14
- from QM9_dataset_class import PreprocessedQM9Dataset
15
-
16
- RDLogger.DisableLog('rdApp.*')
17
- import torch
18
- import torch.nn as nn
19
- import torch.optim as optim
20
-
21
-
22
- QM9_label_keys = ['mu','alpha','homo','lumo','gap','r2','zpve','U0','U','H','G','Cv']
23
-
24
-
25
-
26
- def prepare_main(label_keys=None, cutoff=5.0,save_path="dataset"):
27
- assert save_path !="","save_path shouldn't be empty"
28
- if label_keys is None:
29
- raise ValueError('label_keys cannot be None')
30
- for label_key in label_keys:
31
- if label_key not in QM9_label_keys:
32
- raise ValueError('label_key must be in QM9_label_keys,refer:https://docs.dgl.ai/en/0.8.x/generated/dgl.data.QM9Dataset.html')
33
- dataset = QM9Dataset(label_keys=label_keys, cutoff=5.0)
34
- dataset_processed = PreprocessedQM9Dataset(dataset)
35
- print("Store processed QM9 dataset:",save_path)
36
- dataset_processed.save_dataset("dataset")
37
- return dataset_processed
38
-
39
- def main():
40
- parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
41
- parser.add_argument('--label_keys', nargs='+', help="label keys in QM9 dataset,like 'mu' 'gap'....")
42
- parser.add_argument('--cutoff', type=float, default=5.0, help="cutoff for atom number")
43
- parser.add_argument('--save_path', type=str, default="dataset", help="processed_dataset save path")
44
- args = parser.parse_args()
45
- prepare_main(label_keys=args.label_keys, cutoff=args.cutoff)
46
-
47
- if __name__ == '__main__':
48
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph/GraphMAE_MQ9/run.py DELETED
@@ -1,94 +0,0 @@
1
- import argparse
2
- import os
3
-
4
- import dgl
5
- import torch.utils.data
6
- from dgl.dataloading import GraphDataLoader
7
- from torch import optim
8
- from tqdm import tqdm
9
- from QM9_dataset_class import PreprocessedQM9Dataset
10
- from model import SimpleGnn, GMae
11
- import torch.nn as nn
12
-
13
- def train_epoch(epoch, graphLoader: torch.utils.data.DataLoader,
14
- model: nn.Module,device, optimizer:torch.optim.Optimizer,
15
- save_dir:str
16
- ):
17
- print(f"epoch {epoch} started!")
18
- model.train()
19
- model.encoder.train()
20
- model.decoder.train()
21
- model.to(device)
22
- loss_epoch = 0
23
- for batch in tqdm(graphLoader):
24
- optimizer.zero_grad()
25
- batch_g, _ = batch
26
- R = batch_g.ndata["R"].to(device)
27
- # Z_index = batch_g.ndata["Z_index"].to(device)
28
- Z_index = batch_g.ndata["Z_index"].to(device)
29
- Z_emb = model.encode_atom_index(Z_index)
30
- feat = torch.cat([R, Z_emb], dim=1)
31
- batch_g = batch_g.to(device)
32
- loss = model.mask_attr_prediction(batch_g, feat)
33
- loss.backward()
34
- optimizer.step()
35
- loss_epoch += loss.item()
36
- return loss_epoch
37
-
38
-
39
- def train_loop(dataset_path, epochs, batch_size,device,save_dir):
40
- device = torch.device(device)
41
- dataset = PreprocessedQM9Dataset(None)
42
- dataset.load_dataset(dataset_path)
43
- print("Dataset loaded:", dataset_path, "Total samples:", len(dataset))
44
- print("Initializing dataloader")
45
- myGLoader = GraphDataLoader(dataset, batch_size=batch_size, pin_memory=True,shuffle=False)
46
- sage_enc = SimpleGnn(in_feats=7, hid_feats=4, out_feats=4) # 7 = R_dim(3)+Z_embedding_dim(4)
47
- sage_dec = SimpleGnn(in_feats=4, hid_feats=4, out_feats=7)
48
- gmae = GMae(sage_enc, sage_dec, 7, 4, 7, replace_rate=0)
49
- optimizer = optim.Adam(gmae.parameters(), lr=1e-3)
50
- print("Start training", "epochs:", epochs, "batch_size:", batch_size)
51
- for epoch in range(epochs):
52
- loss_epoch = train_epoch(epoch, myGLoader,gmae,device,optimizer,save_dir)
53
- formatted_loss_epoch = f"{loss_epoch:.3f}"
54
- save_path = os.path.join(save_dir,f"epoch_{epoch}",f"gmae_{formatted_loss_epoch}.pt")
55
- save_subdir = os.path.dirname(save_path)
56
- if not os.path.exists(save_subdir):
57
- os.makedirs(save_subdir, exist_ok=True)
58
- torch.save(gmae.state_dict(), save_path)
59
- print(f"Epoch:{epoch},loss:{loss_epoch},Model saved:{save_path}")
60
- with torch.no_grad():
61
- embedded_graphs = []
62
- print(f"Epoch:{epoch},start embedding")
63
- gmae.eval()
64
- gmae.encoder.eval()
65
- for batch in tqdm(myGLoader):
66
- batch_g, _ = batch
67
- R = batch_g.ndata["R"].to(device)
68
- Z_index = batch_g.ndata["Z_index"].to(device)
69
- Z_emb = gmae.encode_atom_index(Z_index)
70
- feat = torch.cat([R, Z_emb], dim=1)
71
- batch_g = batch_g.to(device)
72
- batch_g.ndata["embedding"] = gmae.embed(batch_g,feat)
73
- unbatched_graphs = dgl.unbatch(batch_g)
74
- embedded_graphs.extend(unbatched_graphs)
75
- for idx,embedded_graph in enumerate(embedded_graphs):
76
- embeddings_save_path = os.path.join(save_dir, f"epoch_{epoch}", f"embedding_{idx}.dgl")
77
- dgl.save_graphs(embeddings_save_path, [embedded_graph])
78
- print(f"epoch:{epoch},embedding saved:{embeddings_save_path},total_graphs:{len(embedded_graphs)}")
79
-
80
-
81
-
82
- def main():
83
- parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
84
- parser.add_argument('--dataset_path', type=str, default='dataset/QM9_dataset_processed.pt')
85
- parser.add_argument('--batch_size', type=int, default=4)
86
- parser.add_argument('--epochs', type=int, default=10, help='number of epochs')
87
- parser.add_argument("--device", type=str, default='cuda:0')
88
- parser.add_argument("--save_dir", type=str, default='./model')
89
- args = parser.parse_args()
90
- train_loop(args.dataset_path, args.epochs, args.batch_size,args.device,args.save_dir)
91
-
92
-
93
- if __name__ == '__main__':
94
- main()