HUANGYIFEI
commited on
add QM9_dataset_class.py
Browse files
Graph/GraphMAE_MQ9/QM9_dataset_class.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from tqdm import tqdm
|
4 |
+
import networkx as nx
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
|
8 |
+
atom_number_index_dict = {
|
9 |
+
1: 0, # H
|
10 |
+
6: 1, # C
|
11 |
+
7: 2, # N
|
12 |
+
8: 3, # O
|
13 |
+
9: 4 # F
|
14 |
+
}
|
15 |
+
atom_index_number_dict = {v: k for k, v in atom_number_index_dict.items()}
|
16 |
+
max_atom_number = max(atom_number_index_dict.keys())
|
17 |
+
|
18 |
+
|
19 |
+
def atom_number2index(atom_number):
|
20 |
+
return atom_number_index_dict[atom_number]
|
21 |
+
|
22 |
+
|
23 |
+
def atom_index2number(atom_index):
|
24 |
+
return atom_index_number_dict[atom_index]
|
25 |
+
|
26 |
+
|
27 |
+
class PreprocessedQM9Dataset(Dataset):
|
28 |
+
def __init__(self, dataset):
|
29 |
+
self.dataset = dataset
|
30 |
+
self.processed_data = []
|
31 |
+
if dataset is not None:
|
32 |
+
self._preprocess()
|
33 |
+
def _preprocess(self):
|
34 |
+
i = 0
|
35 |
+
for g, label in tqdm(self.dataset):
|
36 |
+
g.ndata["Z_index"] = torch.tensor([atom_number2index(z.item()) for z in g.ndata["Z"]])
|
37 |
+
g.ndata["sample_idx"] = i
|
38 |
+
self.processed_data.append((g, label))
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.processed_data)
|
42 |
+
|
43 |
+
def __getitem__(self, idx):
|
44 |
+
return self.processed_data[idx]
|
45 |
+
|
46 |
+
def save_dataset(self, save_dir):
|
47 |
+
if not os.path.exists(save_dir):
|
48 |
+
os.makedirs(save_dir)
|
49 |
+
torch.save(self.processed_data, os.path.join(save_dir,"QM9_dataset_processed.pt"))
|
50 |
+
def load_dataset(self, dataset_path):
|
51 |
+
self.processed_data = torch.load(dataset_path)
|