RRFRRF
commited on
Commit
•
dee113c
0
Parent(s):
init commit without .pth
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +55 -0
- Code-Code/Clone-detection-BigCloneBench/code/eval.sh +19 -0
- Code-Code/Clone-detection-BigCloneBench/code/evaluate.sh +3 -0
- Code-Code/Clone-detection-BigCloneBench/code/evaluator.py +53 -0
- Code-Code/Clone-detection-BigCloneBench/code/model.py +62 -0
- Code-Code/Clone-detection-BigCloneBench/code/run.py +649 -0
- Code-Code/Clone-detection-BigCloneBench/code/train.log +0 -0
- Code-Code/Clone-detection-BigCloneBench/code/train.sh +18 -0
- Code-Code/Clone-detection-BigCloneBench/dataset.zip +3 -0
- Code-Code/Clone-detection-POJ-104/code/eval.sh +17 -0
- Code-Code/Clone-detection-POJ-104/code/evaluate.sh +6 -0
- Code-Code/Clone-detection-POJ-104/code/evaluator.py +64 -0
- Code-Code/Clone-detection-POJ-104/code/extract_answers.py +39 -0
- Code-Code/Clone-detection-POJ-104/code/model.py +48 -0
- Code-Code/Clone-detection-POJ-104/code/run.py +632 -0
- Code-Code/Clone-detection-POJ-104/code/test.sh +17 -0
- Code-Code/Clone-detection-POJ-104/code/train.sh +18 -0
- Code-Code/Clone-detection-POJ-104/dataset.zip +3 -0
- Code-Code/CodeCompletion-token/code/beam.py +118 -0
- Code-Code/CodeCompletion-token/code/dataset.py +261 -0
- Code-Code/CodeCompletion-token/code/eval.sh +20 -0
- Code-Code/CodeCompletion-token/code/evaluate.sh +3 -0
- Code-Code/CodeCompletion-token/code/evaluator.py +36 -0
- Code-Code/CodeCompletion-token/code/model.py +68 -0
- Code-Code/CodeCompletion-token/code/run_lm.py +728 -0
- Code-Code/CodeCompletion-token/code/train.sh +31 -0
- Code-Code/CodeCompletion-token/data.zip +3 -0
- Code-Code/Defect-detection/code/eval.sh +18 -0
- Code-Code/Defect-detection/code/evaluate.sh +1 -0
- Code-Code/Defect-detection/code/evaluator.py +52 -0
- Code-Code/Defect-detection/code/model.py +45 -0
- Code-Code/Defect-detection/code/run.py +598 -0
- Code-Code/Defect-detection/code/train.sh +17 -0
- Code-Code/Defect-detection/dataset.zip +3 -0
- Code-Code/code-refinement/code/bleu.py +134 -0
- Code-Code/code-refinement/code/eval.sh +17 -0
- Code-Code/code-refinement/code/evaluate.sh +3 -0
- Code-Code/code-refinement/code/evaluator.py +35 -0
- Code-Code/code-refinement/code/model.py +223 -0
- Code-Code/code-refinement/code/run.py +575 -0
- Code-Code/code-refinement/code/train.sh +22 -0
- Code-Code/code-refinement/dataset.zip +3 -0
- Code-Text/code-to-text/code/bleu.py +200 -0
- Code-Text/code-to-text/code/evaluate.sh +6 -0
- Code-Text/code-to-text/code/evaluator.py +200 -0
- Code-Text/code-to-text/code/model.py +222 -0
- Code-Text/code-to-text/code/run.py +544 -0
- Code-Text/code-to-text/code/test.sh +22 -0
- Code-Text/code-to-text/code/train.sh +28 -0
- Code-Text/code-to-text/data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
+
# Audio files - uncompressed
|
38 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
40 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
41 |
+
# Audio files - compressed
|
42 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
43 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
44 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
45 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
46 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
+
# Image files - uncompressed
|
48 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
49 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
50 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
52 |
+
# Image files - compressed
|
53 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
Code-Code/Clone-detection-BigCloneBench/code/eval.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--config_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--tokenizer_name=roberta-base \
|
7 |
+
--do_eval \
|
8 |
+
--do_test \
|
9 |
+
--train_data_file=../dataset/train.txt \
|
10 |
+
--eval_data_file=../dataset/valid.txt \
|
11 |
+
--test_data_file=../dataset/valid.txt \
|
12 |
+
--epoch 2 \
|
13 |
+
--block_size 400 \
|
14 |
+
--train_batch_size 16 \
|
15 |
+
--eval_batch_size 32 \
|
16 |
+
--learning_rate 5e-5 \
|
17 |
+
--max_grad_norm 1.0 \
|
18 |
+
--evaluate_during_training \
|
19 |
+
--seed 123456
|
Code-Code/Clone-detection-BigCloneBench/code/evaluate.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
python evaluator.py \
|
2 |
+
-a ../dataset/valid.txt \
|
3 |
+
-p ../model/predictions.txt
|
Code-Code/Clone-detection-BigCloneBench/code/evaluator.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
from sklearn.metrics import recall_score,precision_score,f1_score
|
6 |
+
|
7 |
+
def read_answers(filename):
|
8 |
+
answers={}
|
9 |
+
with open(filename) as f:
|
10 |
+
for line in f:
|
11 |
+
line=line.strip()
|
12 |
+
idx1,idx2,label=line.split()
|
13 |
+
answers[(idx1,idx2)]=int(label)
|
14 |
+
return answers
|
15 |
+
|
16 |
+
def read_predictions(filename):
|
17 |
+
predictions={}
|
18 |
+
with open(filename) as f:
|
19 |
+
for line in f:
|
20 |
+
line=line.strip()
|
21 |
+
idx1,idx2,label=line.split()
|
22 |
+
predictions[(idx1,idx2)]=int(label)
|
23 |
+
return predictions
|
24 |
+
|
25 |
+
def calculate_scores(answers,predictions):
|
26 |
+
y_trues,y_preds=[],[]
|
27 |
+
for key in answers:
|
28 |
+
if key not in predictions:
|
29 |
+
logging.error("Missing prediction for ({},{}) pair.".format(key[0],key[1]))
|
30 |
+
sys.exit()
|
31 |
+
y_trues.append(answers[key])
|
32 |
+
y_preds.append(predictions[key])
|
33 |
+
scores={}
|
34 |
+
scores['Recall']=recall_score(y_trues, y_preds)
|
35 |
+
scores['Precision']=precision_score(y_trues, y_preds)
|
36 |
+
scores['F1']=f1_score(y_trues, y_preds)
|
37 |
+
return scores
|
38 |
+
|
39 |
+
def main():
|
40 |
+
import argparse
|
41 |
+
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for BigCloneBench dataset.')
|
42 |
+
parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.")
|
43 |
+
parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.")
|
44 |
+
|
45 |
+
|
46 |
+
args = parser.parse_args()
|
47 |
+
answers=read_answers(args.answers)
|
48 |
+
predictions=read_predictions(args.predictions)
|
49 |
+
scores=calculate_scores(answers,predictions)
|
50 |
+
print(scores)
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
main()
|
Code-Code/Clone-detection-BigCloneBench/code/model.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch
|
6 |
+
from torch.autograd import Variable
|
7 |
+
import copy
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
10 |
+
|
11 |
+
class RobertaClassificationHead(nn.Module):
|
12 |
+
"""Head for sentence-level classification tasks."""
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
self.dense = nn.Linear(config.hidden_size*2, config.hidden_size)
|
17 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
18 |
+
self.out_proj = nn.Linear(config.hidden_size, 2)
|
19 |
+
|
20 |
+
def forward(self, features, **kwargs):
|
21 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
22 |
+
x = x.reshape(-1,x.size(-1)*2)
|
23 |
+
x = self.dropout(x)
|
24 |
+
x = self.dense(x)
|
25 |
+
x = torch.tanh(x)
|
26 |
+
x = self.dropout(x)
|
27 |
+
x = self.out_proj(x)
|
28 |
+
return x
|
29 |
+
|
30 |
+
class Model(nn.Module):
|
31 |
+
def __init__(self, encoder,config,tokenizer,args):
|
32 |
+
super(Model, self).__init__()
|
33 |
+
self.encoder = encoder
|
34 |
+
self.config=config
|
35 |
+
self.tokenizer=tokenizer
|
36 |
+
self.classifier=RobertaClassificationHead(config)
|
37 |
+
self.args=args
|
38 |
+
|
39 |
+
|
40 |
+
def forward(self, input_ids=None,labels=None, return_vec=None):
|
41 |
+
input_ids=input_ids.view(-1,self.args.block_size)
|
42 |
+
outputs = self.encoder(input_ids= input_ids,attention_mask=input_ids.ne(1))
|
43 |
+
|
44 |
+
if return_vec:
|
45 |
+
return outputs.pooler_output
|
46 |
+
|
47 |
+
outputs = outputs[0]
|
48 |
+
logits=self.classifier(outputs)
|
49 |
+
prob=F.softmax(logits)
|
50 |
+
|
51 |
+
if labels is not None:
|
52 |
+
loss_fct = CrossEntropyLoss()
|
53 |
+
loss = loss_fct(logits, labels)
|
54 |
+
return loss,prob
|
55 |
+
else:
|
56 |
+
return prob
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
Code-Code/Clone-detection-BigCloneBench/code/run.py
ADDED
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
18 |
+
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
19 |
+
using a masked language modeling (MLM) loss.
|
20 |
+
"""
|
21 |
+
|
22 |
+
from __future__ import absolute_import, division, print_function
|
23 |
+
|
24 |
+
import argparse
|
25 |
+
import glob
|
26 |
+
import logging
|
27 |
+
import os
|
28 |
+
import pickle
|
29 |
+
import random
|
30 |
+
import re
|
31 |
+
import shutil
|
32 |
+
import json
|
33 |
+
import numpy as np
|
34 |
+
import torch
|
35 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
36 |
+
from torch.utils.data.distributed import DistributedSampler
|
37 |
+
|
38 |
+
try:
|
39 |
+
from torch.utils.tensorboard import SummaryWriter
|
40 |
+
except:
|
41 |
+
from tensorboardX import SummaryWriter
|
42 |
+
|
43 |
+
from tqdm import tqdm, trange
|
44 |
+
import multiprocessing
|
45 |
+
from model import Model
|
46 |
+
|
47 |
+
cpu_cont = 16
|
48 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
49 |
+
BertConfig, BertForMaskedLM, BertTokenizer,
|
50 |
+
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
|
51 |
+
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
|
52 |
+
RobertaConfig, RobertaModel, RobertaTokenizer,
|
53 |
+
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
|
54 |
+
|
55 |
+
logger = logging.getLogger(__name__)
|
56 |
+
|
57 |
+
MODEL_CLASSES = {
|
58 |
+
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
|
59 |
+
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
|
60 |
+
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
|
61 |
+
'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
|
62 |
+
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
|
63 |
+
}
|
64 |
+
|
65 |
+
def get_example(item):
|
66 |
+
url1,url2,label,tokenizer,args,cache,url_to_code=item
|
67 |
+
if url1 in cache:
|
68 |
+
code1=cache[url1].copy()
|
69 |
+
else:
|
70 |
+
try:
|
71 |
+
code=' '.join(url_to_code[url1].split())
|
72 |
+
except:
|
73 |
+
code=""
|
74 |
+
code1=tokenizer.tokenize(code)
|
75 |
+
if url2 in cache:
|
76 |
+
code2=cache[url2].copy()
|
77 |
+
else:
|
78 |
+
try:
|
79 |
+
code=' '.join(url_to_code[url2].split())
|
80 |
+
except:
|
81 |
+
code=""
|
82 |
+
code2=tokenizer.tokenize(code)
|
83 |
+
|
84 |
+
return convert_examples_to_features(code1,code2,label,url1,url2,tokenizer,args,cache)
|
85 |
+
|
86 |
+
|
87 |
+
class InputFeatures(object):
|
88 |
+
"""A single training/test features for a example."""
|
89 |
+
def __init__(self,
|
90 |
+
input_tokens,
|
91 |
+
input_ids,
|
92 |
+
label,
|
93 |
+
url1,
|
94 |
+
url2
|
95 |
+
|
96 |
+
):
|
97 |
+
self.input_tokens = input_tokens
|
98 |
+
self.input_ids = input_ids
|
99 |
+
self.label=label
|
100 |
+
self.url1=url1
|
101 |
+
self.url2=url2
|
102 |
+
|
103 |
+
def convert_examples_to_features(code1_tokens,code2_tokens,label,url1,url2,tokenizer,args,cache):
|
104 |
+
#source
|
105 |
+
code1_tokens=code1_tokens[:args.block_size-2]
|
106 |
+
code1_tokens =[tokenizer.cls_token]+code1_tokens+[tokenizer.sep_token]
|
107 |
+
code2_tokens=code2_tokens[:args.block_size-2]
|
108 |
+
code2_tokens =[tokenizer.cls_token]+code2_tokens+[tokenizer.sep_token]
|
109 |
+
|
110 |
+
code1_ids=tokenizer.convert_tokens_to_ids(code1_tokens)
|
111 |
+
padding_length = args.block_size - len(code1_ids)
|
112 |
+
code1_ids+=[tokenizer.pad_token_id]*padding_length
|
113 |
+
|
114 |
+
code2_ids=tokenizer.convert_tokens_to_ids(code2_tokens)
|
115 |
+
padding_length = args.block_size - len(code2_ids)
|
116 |
+
code2_ids+=[tokenizer.pad_token_id]*padding_length
|
117 |
+
|
118 |
+
source_tokens=code1_tokens+code2_tokens
|
119 |
+
source_ids=code1_ids+code2_ids
|
120 |
+
return InputFeatures(source_tokens,source_ids,label,url1,url2)
|
121 |
+
|
122 |
+
class TextDataset(Dataset):
|
123 |
+
def __init__(self, tokenizer, args, file_path='train', block_size=512,pool=None):
|
124 |
+
postfix=file_path.split('/')[-1].split('.txt')[0]
|
125 |
+
self.examples = []
|
126 |
+
index_filename=file_path
|
127 |
+
logger.info("Creating features from index file at %s ", index_filename)
|
128 |
+
url_to_code={}
|
129 |
+
with open('/'.join(index_filename.split('/')[:-1])+'/data.jsonl') as f:
|
130 |
+
for line in f:
|
131 |
+
line=line.strip()
|
132 |
+
js=json.loads(line)
|
133 |
+
url_to_code[js['idx']]=js['func']
|
134 |
+
|
135 |
+
data=[]
|
136 |
+
cache={}
|
137 |
+
f=open(index_filename)
|
138 |
+
with open(index_filename) as f:
|
139 |
+
for line in f:
|
140 |
+
line=line.strip()
|
141 |
+
url1,url2,label=line.split('\t')
|
142 |
+
if url1 not in url_to_code or url2 not in url_to_code:
|
143 |
+
continue
|
144 |
+
if label=='0':
|
145 |
+
label=0
|
146 |
+
else:
|
147 |
+
label=1
|
148 |
+
data.append((url1,url2,label,tokenizer, args,cache,url_to_code))
|
149 |
+
if 'test' not in postfix:
|
150 |
+
data=random.sample(data,int(len(data)*0.1))
|
151 |
+
|
152 |
+
self.examples=pool.map(get_example,tqdm(data,total=len(data)))
|
153 |
+
if 'train' in postfix:
|
154 |
+
for idx, example in enumerate(self.examples[:3]):
|
155 |
+
logger.info("*** Example ***")
|
156 |
+
logger.info("idx: {}".format(idx))
|
157 |
+
logger.info("label: {}".format(example.label))
|
158 |
+
logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))
|
159 |
+
logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
def __len__(self):
|
164 |
+
return len(self.examples)
|
165 |
+
|
166 |
+
def __getitem__(self, item):
|
167 |
+
|
168 |
+
return torch.tensor(self.examples[item].input_ids),torch.tensor(self.examples[item].label)
|
169 |
+
|
170 |
+
|
171 |
+
def load_and_cache_examples(args, tokenizer, evaluate=False,test=False,pool=None):
|
172 |
+
dataset = TextDataset(tokenizer, args, file_path=args.test_data_file if test else (args.eval_data_file if evaluate else args.train_data_file),block_size=args.block_size,pool=pool)
|
173 |
+
return dataset
|
174 |
+
|
175 |
+
def set_seed(seed=42):
|
176 |
+
random.seed(seed)
|
177 |
+
os.environ['PYHTONHASHSEED'] = str(seed)
|
178 |
+
np.random.seed(seed)
|
179 |
+
torch.manual_seed(seed)
|
180 |
+
torch.cuda.manual_seed(seed)
|
181 |
+
torch.backends.cudnn.deterministic = True
|
182 |
+
|
183 |
+
def train(args, train_dataset, model, tokenizer,pool):
|
184 |
+
""" Train the model """
|
185 |
+
|
186 |
+
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
187 |
+
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
188 |
+
|
189 |
+
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
190 |
+
args.max_steps=args.epoch*len( train_dataloader)
|
191 |
+
args.save_steps=len( train_dataloader)
|
192 |
+
args.warmup_steps=len( train_dataloader)
|
193 |
+
args.logging_steps=len( train_dataloader)
|
194 |
+
args.num_train_epochs=args.epoch
|
195 |
+
model.to(args.device)
|
196 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
197 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
198 |
+
optimizer_grouped_parameters = [
|
199 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
200 |
+
'weight_decay': args.weight_decay},
|
201 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
202 |
+
]
|
203 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
204 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
|
205 |
+
num_training_steps=args.max_steps)
|
206 |
+
if args.fp16:
|
207 |
+
try:
|
208 |
+
from apex import amp
|
209 |
+
except ImportError:
|
210 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
211 |
+
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
212 |
+
|
213 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
214 |
+
if args.n_gpu > 1:
|
215 |
+
model = torch.nn.DataParallel(model)
|
216 |
+
|
217 |
+
# Distributed training (should be after apex fp16 initialization)
|
218 |
+
if args.local_rank != -1:
|
219 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
220 |
+
output_device=args.local_rank,
|
221 |
+
find_unused_parameters=True)
|
222 |
+
|
223 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
224 |
+
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
|
225 |
+
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
|
226 |
+
if os.path.exists(scheduler_last):
|
227 |
+
scheduler.load_state_dict(torch.load(scheduler_last))
|
228 |
+
if os.path.exists(optimizer_last):
|
229 |
+
optimizer.load_state_dict(torch.load(optimizer_last))
|
230 |
+
# Train!
|
231 |
+
logger.info("***** Running training *****")
|
232 |
+
logger.info(" Num examples = %d", len(train_dataset))
|
233 |
+
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
234 |
+
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
235 |
+
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
236 |
+
args.train_batch_size * args.gradient_accumulation_steps * (
|
237 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
238 |
+
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
239 |
+
logger.info(" Total optimization steps = %d", args.max_steps)
|
240 |
+
|
241 |
+
global_step = args.start_step
|
242 |
+
tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
|
243 |
+
best_mrr=0.0
|
244 |
+
best_f1=0
|
245 |
+
# model.resize_token_embeddings(len(tokenizer))
|
246 |
+
model.zero_grad()
|
247 |
+
set_seed(args.seed) # Added here for reproducibility (even between python 2 and 3)
|
248 |
+
|
249 |
+
for idx in range(args.start_epoch, int(args.num_train_epochs)):
|
250 |
+
bar = tqdm(train_dataloader,total=len(train_dataloader))
|
251 |
+
tr_num=0
|
252 |
+
train_loss=0
|
253 |
+
for step, batch in enumerate(bar):
|
254 |
+
inputs = batch[0].to(args.device)
|
255 |
+
labels=batch[1].to(args.device)
|
256 |
+
model.train()
|
257 |
+
loss,logits = model(inputs,labels)
|
258 |
+
|
259 |
+
|
260 |
+
if args.n_gpu > 1:
|
261 |
+
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
262 |
+
if args.gradient_accumulation_steps > 1:
|
263 |
+
loss = loss / args.gradient_accumulation_steps
|
264 |
+
|
265 |
+
if args.fp16:
|
266 |
+
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
267 |
+
scaled_loss.backward()
|
268 |
+
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
269 |
+
else:
|
270 |
+
loss.backward()
|
271 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
272 |
+
|
273 |
+
tr_loss += loss.item()
|
274 |
+
tr_num+=1
|
275 |
+
train_loss+=loss.item()
|
276 |
+
if avg_loss==0:
|
277 |
+
avg_loss=tr_loss
|
278 |
+
avg_loss=round(train_loss/tr_num,5)
|
279 |
+
bar.set_description("epoch {} loss {}".format(idx,avg_loss))
|
280 |
+
|
281 |
+
|
282 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
283 |
+
optimizer.step()
|
284 |
+
optimizer.zero_grad()
|
285 |
+
scheduler.step()
|
286 |
+
global_step += 1
|
287 |
+
output_flag=True
|
288 |
+
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
|
289 |
+
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
290 |
+
logging_loss = tr_loss
|
291 |
+
tr_nb=global_step
|
292 |
+
|
293 |
+
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
294 |
+
|
295 |
+
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
|
296 |
+
results = evaluate(args, model, tokenizer,pool=pool,eval_when_training=True)
|
297 |
+
# Save model checkpoint
|
298 |
+
|
299 |
+
if results['eval_f1']>best_f1:
|
300 |
+
best_f1=results['eval_f1']
|
301 |
+
logger.info(" "+"*"*20)
|
302 |
+
logger.info(" Best f1:%s",round(best_f1,4))
|
303 |
+
logger.info(" "+"*"*20)
|
304 |
+
|
305 |
+
checkpoint_prefix = 'checkpoint-best-f1'
|
306 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
307 |
+
if not os.path.exists(output_dir):
|
308 |
+
os.makedirs(output_dir)
|
309 |
+
model_to_save = model.module if hasattr(model,'module') else model
|
310 |
+
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
|
311 |
+
torch.save(model_to_save.state_dict(), output_dir)
|
312 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
313 |
+
|
314 |
+
# 每一轮记录checkpoint
|
315 |
+
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
|
316 |
+
if not os.path.exists(output_dir):
|
317 |
+
os.makedirs(output_dir)
|
318 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
319 |
+
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
|
320 |
+
logger.info("Saving model checkpoint to %s", ckpt_output_path)
|
321 |
+
torch.save(model_to_save.state_dict(), ckpt_output_path)
|
322 |
+
|
323 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
324 |
+
train_iterator.close()
|
325 |
+
break
|
326 |
+
return global_step, tr_loss / global_step
|
327 |
+
|
328 |
+
|
329 |
+
def evaluate(args, model, tokenizer, prefix="",pool=None,eval_when_training=False):
|
330 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
331 |
+
eval_output_dir = args.output_dir
|
332 |
+
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True,pool=pool)
|
333 |
+
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
334 |
+
os.makedirs(eval_output_dir)
|
335 |
+
|
336 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
337 |
+
# Note that DistributedSampler samples randomly
|
338 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
339 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
|
340 |
+
|
341 |
+
# multi-gpu evaluate
|
342 |
+
if args.n_gpu > 1 and eval_when_training is False:
|
343 |
+
model = torch.nn.DataParallel(model)
|
344 |
+
|
345 |
+
# Eval!
|
346 |
+
logger.info("***** Running evaluation {} *****".format(prefix))
|
347 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
348 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
349 |
+
eval_loss = 0.0
|
350 |
+
nb_eval_steps = 0
|
351 |
+
model.eval()
|
352 |
+
logits=[]
|
353 |
+
y_trues=[]
|
354 |
+
for batch in eval_dataloader:
|
355 |
+
inputs = batch[0].to(args.device)
|
356 |
+
labels=batch[1].to(args.device)
|
357 |
+
with torch.no_grad():
|
358 |
+
lm_loss,logit = model(inputs,labels)
|
359 |
+
eval_loss += lm_loss.mean().item()
|
360 |
+
logits.append(logit.cpu().numpy())
|
361 |
+
y_trues.append(labels.cpu().numpy())
|
362 |
+
nb_eval_steps += 1
|
363 |
+
logits=np.concatenate(logits,0)
|
364 |
+
y_trues=np.concatenate(y_trues,0)
|
365 |
+
best_threshold=0
|
366 |
+
best_f1=0
|
367 |
+
for i in range(1,100):
|
368 |
+
threshold=i/100
|
369 |
+
y_preds=logits[:,1]>threshold
|
370 |
+
from sklearn.metrics import recall_score
|
371 |
+
recall=recall_score(y_trues, y_preds)
|
372 |
+
from sklearn.metrics import precision_score
|
373 |
+
precision=precision_score(y_trues, y_preds)
|
374 |
+
from sklearn.metrics import f1_score
|
375 |
+
f1=f1_score(y_trues, y_preds)
|
376 |
+
if f1>best_f1:
|
377 |
+
best_f1=f1
|
378 |
+
best_threshold=threshold
|
379 |
+
|
380 |
+
y_preds=logits[:,1]>best_threshold
|
381 |
+
from sklearn.metrics import recall_score
|
382 |
+
recall=recall_score(y_trues, y_preds)
|
383 |
+
from sklearn.metrics import precision_score
|
384 |
+
precision=precision_score(y_trues, y_preds)
|
385 |
+
from sklearn.metrics import f1_score
|
386 |
+
f1=f1_score(y_trues, y_preds)
|
387 |
+
result = {
|
388 |
+
"eval_recall": float(recall),
|
389 |
+
"eval_precision": float(precision),
|
390 |
+
"eval_f1": float(f1),
|
391 |
+
"eval_threshold":best_threshold,
|
392 |
+
|
393 |
+
}
|
394 |
+
|
395 |
+
logger.info("***** Eval results {} *****".format(prefix))
|
396 |
+
for key in sorted(result.keys()):
|
397 |
+
logger.info(" %s = %s", key, str(round(result[key],4)))
|
398 |
+
|
399 |
+
return result
|
400 |
+
|
401 |
+
def test(args, model, tokenizer, prefix="",pool=None,best_threshold=0):
|
402 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
403 |
+
eval_dataset = load_and_cache_examples(args, tokenizer, test=True,pool=pool)
|
404 |
+
|
405 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
406 |
+
# Note that DistributedSampler samples randomly
|
407 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
408 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
|
409 |
+
|
410 |
+
# multi-gpu evaluate
|
411 |
+
if args.n_gpu > 1:
|
412 |
+
model = torch.nn.DataParallel(model)
|
413 |
+
|
414 |
+
# Eval!
|
415 |
+
logger.info("***** Running Test {} *****".format(prefix))
|
416 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
417 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
418 |
+
eval_loss = 0.0
|
419 |
+
nb_eval_steps = 0
|
420 |
+
model.eval()
|
421 |
+
logits=[]
|
422 |
+
y_trues=[]
|
423 |
+
for batch in eval_dataloader:
|
424 |
+
inputs = batch[0].to(args.device)
|
425 |
+
labels=batch[1].to(args.device)
|
426 |
+
with torch.no_grad():
|
427 |
+
lm_loss,logit = model(inputs,labels)
|
428 |
+
eval_loss += lm_loss.mean().item()
|
429 |
+
logits.append(logit.cpu().numpy())
|
430 |
+
y_trues.append(labels.cpu().numpy())
|
431 |
+
nb_eval_steps += 1
|
432 |
+
logits=np.concatenate(logits,0)
|
433 |
+
y_preds=logits[:,1]>best_threshold
|
434 |
+
with open(os.path.join(args.output_dir,"predictions.txt"),'w') as f:
|
435 |
+
for example,pred in zip(eval_dataset.examples,y_preds):
|
436 |
+
if pred:
|
437 |
+
f.write(example.url1+'\t'+example.url2+'\t'+'1'+'\n')
|
438 |
+
else:
|
439 |
+
f.write(example.url1+'\t'+example.url2+'\t'+'0'+'\n')
|
440 |
+
|
441 |
+
def main():
|
442 |
+
parser = argparse.ArgumentParser()
|
443 |
+
|
444 |
+
## Required parameters
|
445 |
+
parser.add_argument("--train_data_file", default=None, type=str, required=True,
|
446 |
+
help="The input training data file (a text file).")
|
447 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
448 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
449 |
+
|
450 |
+
## Other parameters
|
451 |
+
parser.add_argument("--eval_data_file", default=None, type=str,
|
452 |
+
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
|
453 |
+
parser.add_argument("--test_data_file", default=None, type=str,
|
454 |
+
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
|
455 |
+
|
456 |
+
parser.add_argument("--model_type", default="bert", type=str,
|
457 |
+
help="The model architecture to be fine-tuned.")
|
458 |
+
parser.add_argument("--model_name_or_path", default=None, type=str,
|
459 |
+
help="The model checkpoint for weights initialization.")
|
460 |
+
|
461 |
+
parser.add_argument("--mlm", action='store_true',
|
462 |
+
help="Train with masked-language modeling loss instead of language modeling.")
|
463 |
+
parser.add_argument("--mlm_probability", type=float, default=0.15,
|
464 |
+
help="Ratio of tokens to mask for masked language modeling loss")
|
465 |
+
|
466 |
+
parser.add_argument("--config_name", default="", type=str,
|
467 |
+
help="Optional pretrained config name or path if not the same as model_name_or_path")
|
468 |
+
parser.add_argument("--tokenizer_name", default="", type=str,
|
469 |
+
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
|
470 |
+
parser.add_argument("--cache_dir", default="", type=str,
|
471 |
+
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
|
472 |
+
parser.add_argument("--block_size", default=-1, type=int,
|
473 |
+
help="Optional input sequence length after tokenization."
|
474 |
+
"The training dataset will be truncated in block of this size for training."
|
475 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens).")
|
476 |
+
parser.add_argument("--do_train", action='store_true',
|
477 |
+
help="Whether to run training.")
|
478 |
+
parser.add_argument("--do_eval", action='store_true',
|
479 |
+
help="Whether to run eval on the dev set.")
|
480 |
+
parser.add_argument("--do_test", action='store_true',
|
481 |
+
help="Whether to run eval on the dev set.")
|
482 |
+
parser.add_argument("--evaluate_during_training", action='store_true',
|
483 |
+
help="Run evaluation during training at each logging step.")
|
484 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
485 |
+
help="Set this flag if you are using an uncased model.")
|
486 |
+
|
487 |
+
parser.add_argument("--train_batch_size", default=4, type=int,
|
488 |
+
help="Batch size per GPU/CPU for training.")
|
489 |
+
parser.add_argument("--eval_batch_size", default=4, type=int,
|
490 |
+
help="Batch size per GPU/CPU for evaluation.")
|
491 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
492 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
493 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
494 |
+
help="The initial learning rate for Adam.")
|
495 |
+
parser.add_argument("--weight_decay", default=0.0, type=float,
|
496 |
+
help="Weight deay if we apply some.")
|
497 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
498 |
+
help="Epsilon for Adam optimizer.")
|
499 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
500 |
+
help="Max gradient norm.")
|
501 |
+
parser.add_argument("--num_train_epochs", default=1.0, type=float,
|
502 |
+
help="Total number of training epochs to perform.")
|
503 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
504 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
505 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
506 |
+
help="Linear warmup over warmup_steps.")
|
507 |
+
|
508 |
+
parser.add_argument('--logging_steps', type=int, default=50,
|
509 |
+
help="Log every X updates steps.")
|
510 |
+
parser.add_argument('--save_steps', type=int, default=50,
|
511 |
+
help="Save checkpoint every X updates steps.")
|
512 |
+
parser.add_argument('--save_total_limit', type=int, default=None,
|
513 |
+
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
|
514 |
+
parser.add_argument("--eval_all_checkpoints", action='store_true',
|
515 |
+
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
|
516 |
+
parser.add_argument("--no_cuda", action='store_true',
|
517 |
+
help="Avoid using CUDA when available")
|
518 |
+
parser.add_argument('--overwrite_output_dir', action='store_true',
|
519 |
+
help="Overwrite the content of the output directory")
|
520 |
+
parser.add_argument('--overwrite_cache', action='store_true',
|
521 |
+
help="Overwrite the cached training and evaluation sets")
|
522 |
+
parser.add_argument('--seed', type=int, default=42,
|
523 |
+
help="random seed for initialization")
|
524 |
+
parser.add_argument('--epoch', type=int, default=42,
|
525 |
+
help="random seed for initialization")
|
526 |
+
parser.add_argument('--fp16', action='store_true',
|
527 |
+
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
528 |
+
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
529 |
+
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
530 |
+
"See details at https://nvidia.github.io/apex/amp.html")
|
531 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
532 |
+
help="For distributed training: local_rank")
|
533 |
+
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
|
534 |
+
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
|
535 |
+
|
536 |
+
|
537 |
+
pool = multiprocessing.Pool(cpu_cont)
|
538 |
+
args = parser.parse_args()
|
539 |
+
|
540 |
+
# Setup distant debugging if needed
|
541 |
+
if args.server_ip and args.server_port:
|
542 |
+
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
543 |
+
import ptvsd
|
544 |
+
print("Waiting for debugger attach")
|
545 |
+
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
546 |
+
ptvsd.wait_for_attach()
|
547 |
+
|
548 |
+
# Setup CUDA, GPU & distributed training
|
549 |
+
if args.local_rank == -1 or args.no_cuda:
|
550 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
551 |
+
args.n_gpu = torch.cuda.device_count()
|
552 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
553 |
+
torch.cuda.set_device(args.local_rank)
|
554 |
+
device = torch.device("cuda", args.local_rank)
|
555 |
+
torch.distributed.init_process_group(backend='nccl')
|
556 |
+
args.n_gpu = 1
|
557 |
+
args.device = device
|
558 |
+
args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
|
559 |
+
args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
|
560 |
+
# Setup logging
|
561 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
562 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
563 |
+
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
564 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
565 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
566 |
+
|
567 |
+
# Set seed
|
568 |
+
set_seed(args.seed)
|
569 |
+
|
570 |
+
# Load pretrained model and tokenizer
|
571 |
+
if args.local_rank not in [-1, 0]:
|
572 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
|
573 |
+
|
574 |
+
args.start_epoch = 0
|
575 |
+
args.start_step = 0
|
576 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
577 |
+
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
|
578 |
+
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
|
579 |
+
args.config_name = os.path.join(checkpoint_last, 'config.json')
|
580 |
+
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
|
581 |
+
with open(idx_file, encoding='utf-8') as idxf:
|
582 |
+
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
|
583 |
+
|
584 |
+
step_file = os.path.join(checkpoint_last, 'step_file.txt')
|
585 |
+
if os.path.exists(step_file):
|
586 |
+
with open(step_file, encoding='utf-8') as stepf:
|
587 |
+
args.start_step = int(stepf.readlines()[0].strip())
|
588 |
+
|
589 |
+
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
|
590 |
+
|
591 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
592 |
+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
|
593 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
594 |
+
config.num_labels=2
|
595 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,
|
596 |
+
do_lower_case=args.do_lower_case,
|
597 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
598 |
+
if args.block_size <= 0:
|
599 |
+
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
|
600 |
+
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
|
601 |
+
if args.model_name_or_path:
|
602 |
+
model = model_class.from_pretrained(args.model_name_or_path,
|
603 |
+
from_tf=bool('.ckpt' in args.model_name_or_path),
|
604 |
+
config=config,
|
605 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
606 |
+
else:
|
607 |
+
model = model_class(config)
|
608 |
+
|
609 |
+
model=Model(model,config,tokenizer,args)
|
610 |
+
if args.local_rank == 0:
|
611 |
+
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
|
612 |
+
|
613 |
+
logger.info("Training/evaluation parameters %s", args)
|
614 |
+
|
615 |
+
# Training
|
616 |
+
if args.do_train:
|
617 |
+
if args.local_rank not in [-1, 0]:
|
618 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
|
619 |
+
|
620 |
+
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False,pool=pool)
|
621 |
+
|
622 |
+
if args.local_rank == 0:
|
623 |
+
torch.distributed.barrier()
|
624 |
+
|
625 |
+
global_step, tr_loss = train(args, train_dataset, model, tokenizer,pool)
|
626 |
+
|
627 |
+
|
628 |
+
# Evaluation
|
629 |
+
results = {}
|
630 |
+
if args.do_eval and args.local_rank in [-1, 0]:
|
631 |
+
checkpoint_prefix = 'epoch_2/subject_model.pth'
|
632 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
633 |
+
model.load_state_dict(torch.load(output_dir))
|
634 |
+
model.to(args.device)
|
635 |
+
result=evaluate(args, model, tokenizer,pool=pool)
|
636 |
+
|
637 |
+
if args.do_test and args.local_rank in [-1, 0]:
|
638 |
+
checkpoint_prefix = 'epoch_2/subject_model.pth'
|
639 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
640 |
+
model.load_state_dict(torch.load(output_dir))
|
641 |
+
model.to(args.device)
|
642 |
+
test(args, model, tokenizer,pool=pool,best_threshold=0.5)
|
643 |
+
|
644 |
+
return results
|
645 |
+
|
646 |
+
|
647 |
+
if __name__ == "__main__":
|
648 |
+
main()
|
649 |
+
|
Code-Code/Clone-detection-BigCloneBench/code/train.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Code-Code/Clone-detection-BigCloneBench/code/train.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--config_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--tokenizer_name=roberta-base \
|
7 |
+
--do_train \
|
8 |
+
--train_data_file=../dataset/train.txt \
|
9 |
+
--eval_data_file=../dataset/valid.txt \
|
10 |
+
--test_data_file=../dataset/test.txt \
|
11 |
+
--epoch 2 \
|
12 |
+
--block_size 400 \
|
13 |
+
--train_batch_size 16 \
|
14 |
+
--eval_batch_size 32 \
|
15 |
+
--learning_rate 5e-5 \
|
16 |
+
--max_grad_norm 1.0 \
|
17 |
+
--evaluate_during_training \
|
18 |
+
--seed 123456
|
Code-Code/Clone-detection-BigCloneBench/dataset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:922ad328fff2df059476a791c55ce23f2444af7d4ec72da93bc33ed81d456572
|
3 |
+
size 13203888
|
Code-Code/Clone-detection-POJ-104/code/eval.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--config_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--tokenizer_name=roberta-base \
|
7 |
+
--do_eval \
|
8 |
+
--train_data_file=../dataset/train.jsonl \
|
9 |
+
--eval_data_file=../dataset/valid.jsonl \
|
10 |
+
--epoch 2 \
|
11 |
+
--block_size 400 \
|
12 |
+
--train_batch_size 8 \
|
13 |
+
--eval_batch_size 16 \
|
14 |
+
--learning_rate 2e-5 \
|
15 |
+
--max_grad_norm 1.0 \
|
16 |
+
--evaluate_during_training \
|
17 |
+
--seed 123456
|
Code-Code/Clone-detection-POJ-104/code/evaluate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python extract_answers.py \
|
2 |
+
-c ../dataset/valid.jsonl \
|
3 |
+
-o ../model/answers.jsonl
|
4 |
+
python evaluator.py \
|
5 |
+
-a ../model/answers.jsonl \
|
6 |
+
-p ../model/predictions.jsonl
|
Code-Code/Clone-detection-POJ-104/code/evaluator.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import logging
|
4 |
+
import sys,json
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
def read_answers(filename):
|
9 |
+
answers={}
|
10 |
+
with open(filename) as f:
|
11 |
+
for line in f:
|
12 |
+
line=line.strip()
|
13 |
+
js=json.loads(line)
|
14 |
+
answers[js['index']]=js['answers']
|
15 |
+
return answers
|
16 |
+
|
17 |
+
def read_predictions(filename):
|
18 |
+
predictions={}
|
19 |
+
with open(filename) as f:
|
20 |
+
for line in f:
|
21 |
+
line=line.strip()
|
22 |
+
js=json.loads(line)
|
23 |
+
predictions[js['index']]=js['answers']
|
24 |
+
return predictions
|
25 |
+
|
26 |
+
def calculate_scores(answers,predictions):
|
27 |
+
scores=[]
|
28 |
+
for key in answers:
|
29 |
+
if key not in predictions:
|
30 |
+
logging.error("Missing prediction for index {}.".format(key))
|
31 |
+
sys.exit()
|
32 |
+
|
33 |
+
if len(answers[key])!=len(predictions[key]):
|
34 |
+
logging.error("Mismatch the number of answers for index {}.".format(key))
|
35 |
+
sys.exit()
|
36 |
+
|
37 |
+
answer = set(answers[key])
|
38 |
+
|
39 |
+
Avep = []
|
40 |
+
for k, p in enumerate(predictions[key]):
|
41 |
+
if p in answer:
|
42 |
+
Avep.append((len(Avep)+1)/(k+1))
|
43 |
+
|
44 |
+
scores.append(sum(Avep)/len(answer))
|
45 |
+
|
46 |
+
result={}
|
47 |
+
result['MAP@R']= round(np.mean(scores),4)
|
48 |
+
return result
|
49 |
+
|
50 |
+
def main():
|
51 |
+
import argparse
|
52 |
+
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for POJ-104 dataset.')
|
53 |
+
parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.")
|
54 |
+
parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.")
|
55 |
+
|
56 |
+
|
57 |
+
args = parser.parse_args()
|
58 |
+
answers=read_answers(args.answers)
|
59 |
+
predictions=read_predictions(args.predictions)
|
60 |
+
scores=calculate_scores(answers,predictions)
|
61 |
+
print(scores)
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
main()
|
Code-Code/Clone-detection-POJ-104/code/extract_answers.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import json
|
4 |
+
|
5 |
+
def extract_answers(filename):
|
6 |
+
cluster={}
|
7 |
+
with open(filename) as f:
|
8 |
+
for line in f:
|
9 |
+
line=line.strip()
|
10 |
+
js=json.loads(line)
|
11 |
+
if js['label'] not in cluster:
|
12 |
+
cluster[js['label']]=set()
|
13 |
+
cluster[js['label']].add(js['index'])
|
14 |
+
answers=[]
|
15 |
+
for key in cluster:
|
16 |
+
for idx1 in cluster[key]:
|
17 |
+
temp={}
|
18 |
+
temp['index']=idx1
|
19 |
+
temp['answers']=[]
|
20 |
+
for idx2 in cluster[key]:
|
21 |
+
if idx1!=idx2:
|
22 |
+
temp['answers'].append(idx2)
|
23 |
+
answers.append(temp)
|
24 |
+
return answers
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
import argparse
|
29 |
+
parser = argparse.ArgumentParser(description='Extract answers from code files.')
|
30 |
+
parser.add_argument('--codefile', '-c',help="filename of the code examples.")
|
31 |
+
parser.add_argument('--outfile', '-o',help="filename of output.")
|
32 |
+
args = parser.parse_args()
|
33 |
+
answers=extract_answers(args.codefile)
|
34 |
+
with open(args.outfile,'w') as f:
|
35 |
+
for line in answers:
|
36 |
+
f.write(json.dumps(line)+'\n')
|
37 |
+
|
38 |
+
if __name__ == '__main__':
|
39 |
+
main()
|
Code-Code/Clone-detection-POJ-104/code/model.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch
|
6 |
+
from torch.autograd import Variable
|
7 |
+
import copy
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
class Model(nn.Module):
|
14 |
+
def __init__(self, encoder,config,tokenizer,args):
|
15 |
+
super(Model, self).__init__()
|
16 |
+
self.encoder = encoder
|
17 |
+
self.config=config
|
18 |
+
self.tokenizer=tokenizer
|
19 |
+
self.args=args
|
20 |
+
|
21 |
+
|
22 |
+
def forward(self, input_ids=None,p_input_ids=None,n_input_ids=None,labels=None):
|
23 |
+
bs,_=input_ids.size()
|
24 |
+
input_ids=torch.cat((input_ids,p_input_ids,n_input_ids),0)
|
25 |
+
|
26 |
+
outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1))
|
27 |
+
if len(outputs) > 1:
|
28 |
+
outputs = outputs[1]
|
29 |
+
else:
|
30 |
+
outputs = outputs[0][:, 0, :]
|
31 |
+
outputs=outputs.split(bs,0)
|
32 |
+
|
33 |
+
prob_1=(outputs[0]*outputs[1]).sum(-1)
|
34 |
+
prob_2=(outputs[0]*outputs[2]).sum(-1)
|
35 |
+
temp=torch.cat((outputs[0],outputs[1]),0)
|
36 |
+
temp_labels=torch.cat((labels,labels),0)
|
37 |
+
prob_3= torch.mm(outputs[0],temp.t())
|
38 |
+
mask=labels[:,None]==temp_labels[None,:]
|
39 |
+
prob_3=prob_3*(1-mask.float())-1e9*mask.float()
|
40 |
+
|
41 |
+
prob=torch.softmax(torch.cat((prob_1[:,None],prob_2[:,None],prob_3),-1),-1)
|
42 |
+
loss=torch.log(prob[:,0]+1e-10)
|
43 |
+
loss=-loss.mean()
|
44 |
+
return loss,outputs[0]
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
Code-Code/Clone-detection-POJ-104/code/run.py
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
18 |
+
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
19 |
+
using a masked language modeling (MLM) loss.
|
20 |
+
"""
|
21 |
+
|
22 |
+
from __future__ import absolute_import, division, print_function
|
23 |
+
|
24 |
+
import argparse
|
25 |
+
import glob
|
26 |
+
import logging
|
27 |
+
import os
|
28 |
+
import pickle
|
29 |
+
import random
|
30 |
+
import re
|
31 |
+
import shutil
|
32 |
+
|
33 |
+
import numpy as np
|
34 |
+
import torch
|
35 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
36 |
+
from torch.utils.data.distributed import DistributedSampler
|
37 |
+
import json
|
38 |
+
try:
|
39 |
+
from torch.utils.tensorboard import SummaryWriter
|
40 |
+
except:
|
41 |
+
from tensorboardX import SummaryWriter
|
42 |
+
|
43 |
+
from tqdm import tqdm, trange
|
44 |
+
import multiprocessing
|
45 |
+
from model import Model
|
46 |
+
cpu_cont = multiprocessing.cpu_count()
|
47 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
48 |
+
BertConfig, BertModel, BertTokenizer,
|
49 |
+
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
|
50 |
+
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
|
51 |
+
RobertaConfig, RobertaModel, RobertaTokenizer,
|
52 |
+
DistilBertConfig, DistilBertModel, DistilBertTokenizer)
|
53 |
+
|
54 |
+
logger = logging.getLogger(__name__)
|
55 |
+
|
56 |
+
MODEL_CLASSES = {
|
57 |
+
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
|
58 |
+
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
|
59 |
+
'bert': (BertConfig, BertModel, BertTokenizer),
|
60 |
+
'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
|
61 |
+
'distilbert': (DistilBertConfig, DistilBertModel, DistilBertTokenizer)
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
class InputFeatures(object):
|
66 |
+
"""A single training/test features for a example."""
|
67 |
+
def __init__(self,
|
68 |
+
input_tokens,
|
69 |
+
input_ids,
|
70 |
+
index,
|
71 |
+
label,
|
72 |
+
|
73 |
+
):
|
74 |
+
self.input_tokens = input_tokens
|
75 |
+
self.input_ids = input_ids
|
76 |
+
self.index=index
|
77 |
+
self.label=label
|
78 |
+
|
79 |
+
|
80 |
+
def convert_examples_to_features(js,tokenizer,args):
|
81 |
+
#source
|
82 |
+
code=' '.join(js['code'].split())
|
83 |
+
code_tokens=tokenizer.tokenize(code)[:args.block_size-2]
|
84 |
+
source_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]
|
85 |
+
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
|
86 |
+
padding_length = args.block_size - len(source_ids)
|
87 |
+
source_ids+=[tokenizer.pad_token_id]*padding_length
|
88 |
+
return InputFeatures(source_tokens,source_ids,js['index'],int(js['label']))
|
89 |
+
|
90 |
+
class TextDataset(Dataset):
|
91 |
+
def __init__(self, tokenizer, args, file_path=None):
|
92 |
+
self.examples = []
|
93 |
+
data=[]
|
94 |
+
with open(file_path) as f:
|
95 |
+
for line in f:
|
96 |
+
line=line.strip()
|
97 |
+
js=json.loads(line)
|
98 |
+
data.append(js)
|
99 |
+
for js in data:
|
100 |
+
self.examples.append(convert_examples_to_features(js,tokenizer,args))
|
101 |
+
if 'train' in file_path:
|
102 |
+
for idx, example in enumerate(self.examples[:3]):
|
103 |
+
logger.info("*** Example ***")
|
104 |
+
logger.info("idx: {}".format(idx))
|
105 |
+
logger.info("label: {}".format(example.label))
|
106 |
+
logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))
|
107 |
+
logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))
|
108 |
+
self.label_examples={}
|
109 |
+
for e in self.examples:
|
110 |
+
if e.label not in self.label_examples:
|
111 |
+
self.label_examples[e.label]=[]
|
112 |
+
self.label_examples[e.label].append(e)
|
113 |
+
|
114 |
+
def __len__(self):
|
115 |
+
return len(self.examples)
|
116 |
+
|
117 |
+
def __getitem__(self, i):
|
118 |
+
label=self.examples[i].label
|
119 |
+
index=self.examples[i].index
|
120 |
+
labels=list(self.label_examples)
|
121 |
+
labels.remove(label)
|
122 |
+
while True:
|
123 |
+
shuffle_example=random.sample(self.label_examples[label],1)[0]
|
124 |
+
if shuffle_example.index!=index:
|
125 |
+
p_example=shuffle_example
|
126 |
+
break
|
127 |
+
n_example=random.sample(self.label_examples[random.sample(labels,1)[0]],1)[0]
|
128 |
+
|
129 |
+
return (torch.tensor(self.examples[i].input_ids),torch.tensor(p_example.input_ids),
|
130 |
+
torch.tensor(n_example.input_ids),torch.tensor(label))
|
131 |
+
|
132 |
+
|
133 |
+
def set_seed(seed=42):
|
134 |
+
random.seed(seed)
|
135 |
+
os.environ['PYHTONHASHSEED'] = str(seed)
|
136 |
+
np.random.seed(seed)
|
137 |
+
torch.manual_seed(seed)
|
138 |
+
torch.cuda.manual_seed(seed)
|
139 |
+
torch.backends.cudnn.deterministic = True
|
140 |
+
|
141 |
+
|
142 |
+
def train(args, train_dataset, model, tokenizer):
|
143 |
+
""" Train the model """
|
144 |
+
|
145 |
+
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
146 |
+
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
147 |
+
|
148 |
+
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
|
149 |
+
batch_size=args.train_batch_size,num_workers=4,pin_memory=True)
|
150 |
+
args.max_steps=args.epoch*len( train_dataloader)
|
151 |
+
args.save_steps=len( train_dataloader)
|
152 |
+
args.warmup_steps=len( train_dataloader)
|
153 |
+
args.logging_steps=len( train_dataloader)
|
154 |
+
args.num_train_epochs=args.epoch
|
155 |
+
model.to(args.device)
|
156 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
157 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
158 |
+
optimizer_grouped_parameters = [
|
159 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
160 |
+
'weight_decay': args.weight_decay},
|
161 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
162 |
+
]
|
163 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
164 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,
|
165 |
+
num_training_steps=args.max_steps)
|
166 |
+
if args.fp16:
|
167 |
+
try:
|
168 |
+
from apex import amp
|
169 |
+
except ImportError:
|
170 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
171 |
+
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
172 |
+
|
173 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
174 |
+
if args.n_gpu > 1:
|
175 |
+
model = torch.nn.DataParallel(model)
|
176 |
+
|
177 |
+
# Distributed training (should be after apex fp16 initialization)
|
178 |
+
if args.local_rank != -1:
|
179 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
180 |
+
output_device=args.local_rank,
|
181 |
+
find_unused_parameters=True)
|
182 |
+
|
183 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
184 |
+
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
|
185 |
+
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
|
186 |
+
if os.path.exists(scheduler_last):
|
187 |
+
scheduler.load_state_dict(torch.load(scheduler_last))
|
188 |
+
if os.path.exists(optimizer_last):
|
189 |
+
optimizer.load_state_dict(torch.load(optimizer_last))
|
190 |
+
# Train!
|
191 |
+
logger.info("***** Running training *****")
|
192 |
+
logger.info(" Num examples = %d", len(train_dataset))
|
193 |
+
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
194 |
+
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
195 |
+
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
196 |
+
args.train_batch_size * args.gradient_accumulation_steps * (
|
197 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
198 |
+
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
199 |
+
logger.info(" Total optimization steps = %d", args.max_steps)
|
200 |
+
|
201 |
+
global_step = args.start_step
|
202 |
+
tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
|
203 |
+
best_acc=0.0
|
204 |
+
# model.resize_token_embeddings(len(tokenizer))
|
205 |
+
model.zero_grad()
|
206 |
+
for idx in range(args.start_epoch, int(args.num_train_epochs)):
|
207 |
+
bar = train_dataloader
|
208 |
+
tr_num=0
|
209 |
+
train_loss=0
|
210 |
+
for step, batch in enumerate(bar):
|
211 |
+
inputs = batch[0].to(args.device)
|
212 |
+
p_inputs = batch[1].to(args.device)
|
213 |
+
n_inputs = batch[2].to(args.device)
|
214 |
+
labels = batch[3].to(args.device)
|
215 |
+
model.train()
|
216 |
+
loss,vec = model(inputs,p_inputs,n_inputs,labels)
|
217 |
+
|
218 |
+
|
219 |
+
if args.n_gpu > 1:
|
220 |
+
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
221 |
+
if args.gradient_accumulation_steps > 1:
|
222 |
+
loss = loss / args.gradient_accumulation_steps
|
223 |
+
|
224 |
+
if args.fp16:
|
225 |
+
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
226 |
+
scaled_loss.backward()
|
227 |
+
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
228 |
+
else:
|
229 |
+
loss.backward()
|
230 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
231 |
+
|
232 |
+
tr_loss += loss.item()
|
233 |
+
tr_num+=1
|
234 |
+
train_loss+=loss.item()
|
235 |
+
if avg_loss==0:
|
236 |
+
avg_loss=tr_loss
|
237 |
+
avg_loss=round(train_loss/tr_num,5)
|
238 |
+
if (step+1)% 100==0:
|
239 |
+
logger.info("epoch {} step {} loss {}".format(idx,step+1,avg_loss))
|
240 |
+
#bar.set_description("epoch {} loss {}".format(idx,avg_loss))
|
241 |
+
|
242 |
+
|
243 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
244 |
+
optimizer.step()
|
245 |
+
optimizer.zero_grad()
|
246 |
+
scheduler.step()
|
247 |
+
global_step += 1
|
248 |
+
output_flag=True
|
249 |
+
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
|
250 |
+
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
251 |
+
logging_loss = tr_loss
|
252 |
+
tr_nb=global_step
|
253 |
+
|
254 |
+
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
255 |
+
|
256 |
+
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
|
257 |
+
results = evaluate(args, model, tokenizer,eval_when_training=True)
|
258 |
+
for key, value in results.items():
|
259 |
+
logger.info(" %s = %s", key, round(value,4))
|
260 |
+
# Save model checkpoint
|
261 |
+
tr_num=0
|
262 |
+
train_loss=0
|
263 |
+
|
264 |
+
if results['eval_map']>best_acc:
|
265 |
+
best_acc=results['eval_map']
|
266 |
+
logger.info(" "+"*"*20)
|
267 |
+
logger.info(" Best map:%s",round(best_acc,4))
|
268 |
+
logger.info(" "+"*"*20)
|
269 |
+
|
270 |
+
checkpoint_prefix = 'checkpoint-best-map'
|
271 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
272 |
+
if not os.path.exists(output_dir):
|
273 |
+
os.makedirs(output_dir)
|
274 |
+
model_to_save = model.module if hasattr(model,'module') else model
|
275 |
+
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
|
276 |
+
torch.save(model_to_save.state_dict(), output_dir)
|
277 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
278 |
+
|
279 |
+
# 每一轮记录checkpoint
|
280 |
+
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx))
|
281 |
+
if not os.path.exists(output_dir):
|
282 |
+
os.makedirs(output_dir)
|
283 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
284 |
+
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
|
285 |
+
logger.info("Saving model checkpoint to %s", ckpt_output_path)
|
286 |
+
torch.save(model_to_save.state_dict(), ckpt_output_path)
|
287 |
+
|
288 |
+
|
289 |
+
eval_dataset=None
|
290 |
+
def evaluate(args, model, tokenizer,eval_when_training=False):
|
291 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
292 |
+
eval_output_dir = args.output_dir
|
293 |
+
global eval_dataset
|
294 |
+
if eval_dataset is None:
|
295 |
+
eval_dataset = TextDataset(tokenizer, args,args.eval_data_file)
|
296 |
+
|
297 |
+
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
298 |
+
os.makedirs(eval_output_dir)
|
299 |
+
|
300 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
301 |
+
# Note that DistributedSampler samples randomly
|
302 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
303 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
|
304 |
+
|
305 |
+
# multi-gpu evaluate
|
306 |
+
if args.n_gpu > 1 and eval_when_training is False:
|
307 |
+
model = torch.nn.DataParallel(model)
|
308 |
+
|
309 |
+
# Eval!
|
310 |
+
logger.info("***** Running evaluation *****")
|
311 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
312 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
313 |
+
eval_loss = 0.0
|
314 |
+
nb_eval_steps = 0
|
315 |
+
model.eval()
|
316 |
+
vecs=[]
|
317 |
+
labels=[]
|
318 |
+
for batch in eval_dataloader:
|
319 |
+
inputs = batch[0].to(args.device)
|
320 |
+
p_inputs = batch[1].to(args.device)
|
321 |
+
n_inputs = batch[2].to(args.device)
|
322 |
+
label = batch[3].to(args.device)
|
323 |
+
with torch.no_grad():
|
324 |
+
lm_loss,vec = model(inputs,p_inputs,n_inputs,label)
|
325 |
+
eval_loss += lm_loss.mean().item()
|
326 |
+
vecs.append(vec.cpu().numpy())
|
327 |
+
labels.append(label.cpu().numpy())
|
328 |
+
nb_eval_steps += 1
|
329 |
+
vecs=np.concatenate(vecs,0)
|
330 |
+
labels=np.concatenate(labels,0)
|
331 |
+
eval_loss = eval_loss / nb_eval_steps
|
332 |
+
perplexity = torch.tensor(eval_loss)
|
333 |
+
|
334 |
+
scores=np.matmul(vecs,vecs.T)
|
335 |
+
dic={}
|
336 |
+
for i in range(scores.shape[0]):
|
337 |
+
scores[i,i]=-1000000
|
338 |
+
if int(labels[i]) not in dic:
|
339 |
+
dic[int(labels[i])]=-1
|
340 |
+
dic[int(labels[i])]+=1
|
341 |
+
sort_ids=np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1]
|
342 |
+
MAP=[]
|
343 |
+
for i in range(scores.shape[0]):
|
344 |
+
cont=0
|
345 |
+
label=int(labels[i])
|
346 |
+
Avep = []
|
347 |
+
for j in range(dic[label]):
|
348 |
+
index=sort_ids[i,j]
|
349 |
+
if int(labels[index])==label:
|
350 |
+
Avep.append((len(Avep)+1)/(j+1))
|
351 |
+
MAP.append(sum(Avep)/dic[label])
|
352 |
+
|
353 |
+
result = {
|
354 |
+
"eval_loss": float(perplexity),
|
355 |
+
"eval_map":float(np.mean(MAP))
|
356 |
+
}
|
357 |
+
|
358 |
+
|
359 |
+
return result
|
360 |
+
|
361 |
+
def test(args, model, tokenizer):
|
362 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
363 |
+
eval_dataset = TextDataset(tokenizer, args,args.test_data_file)
|
364 |
+
|
365 |
+
|
366 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
367 |
+
# Note that DistributedSampler samples randomly
|
368 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
369 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
370 |
+
|
371 |
+
# multi-gpu evaluate
|
372 |
+
if args.n_gpu > 1:
|
373 |
+
model = torch.nn.DataParallel(model)
|
374 |
+
|
375 |
+
# Eval!
|
376 |
+
logger.info("***** Running Test *****")
|
377 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
378 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
379 |
+
eval_loss = 0.0
|
380 |
+
nb_eval_steps = 0
|
381 |
+
model.eval()
|
382 |
+
vecs=[]
|
383 |
+
labels=[]
|
384 |
+
for batch in eval_dataloader:
|
385 |
+
inputs = batch[0].to(args.device)
|
386 |
+
p_inputs = batch[1].to(args.device)
|
387 |
+
n_inputs = batch[2].to(args.device)
|
388 |
+
label = batch[3].to(args.device)
|
389 |
+
with torch.no_grad():
|
390 |
+
lm_loss,vec = model(inputs,p_inputs,n_inputs,label)
|
391 |
+
eval_loss += lm_loss.mean().item()
|
392 |
+
vecs.append(vec.cpu().numpy())
|
393 |
+
labels.append(label.cpu().numpy())
|
394 |
+
nb_eval_steps += 1
|
395 |
+
vecs=np.concatenate(vecs,0)
|
396 |
+
labels=np.concatenate(labels,0)
|
397 |
+
eval_loss = eval_loss / nb_eval_steps
|
398 |
+
perplexity = torch.tensor(eval_loss)
|
399 |
+
|
400 |
+
scores=np.matmul(vecs,vecs.T)
|
401 |
+
for i in range(scores.shape[0]):
|
402 |
+
scores[i,i]=-1000000
|
403 |
+
sort_ids=np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1]
|
404 |
+
indexs=[]
|
405 |
+
for example in eval_dataset.examples:
|
406 |
+
indexs.append(example.index)
|
407 |
+
with open(os.path.join(args.output_dir,"predictions.jsonl"),'w') as f:
|
408 |
+
for index,sort_id in zip(indexs,sort_ids):
|
409 |
+
js={}
|
410 |
+
js['index']=index
|
411 |
+
js['answers']=[]
|
412 |
+
for idx in sort_id[:499]:
|
413 |
+
js['answers'].append(indexs[int(idx)])
|
414 |
+
f.write(json.dumps(js)+'\n')
|
415 |
+
|
416 |
+
|
417 |
+
|
418 |
+
def main():
|
419 |
+
parser = argparse.ArgumentParser()
|
420 |
+
|
421 |
+
## Required parameters
|
422 |
+
parser.add_argument("--train_data_file", default=None, type=str, required=True,
|
423 |
+
help="The input training data file (a text file).")
|
424 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
425 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
426 |
+
|
427 |
+
## Other parameters
|
428 |
+
parser.add_argument("--eval_data_file", default=None, type=str,
|
429 |
+
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
|
430 |
+
parser.add_argument("--test_data_file", default=None, type=str,
|
431 |
+
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
|
432 |
+
|
433 |
+
parser.add_argument("--model_type", default="bert", type=str,
|
434 |
+
help="The model architecture to be fine-tuned.")
|
435 |
+
parser.add_argument("--model_name_or_path", default=None, type=str,
|
436 |
+
help="The model checkpoint for weights initialization.")
|
437 |
+
|
438 |
+
parser.add_argument("--mlm", action='store_true',
|
439 |
+
help="Train with masked-language modeling loss instead of language modeling.")
|
440 |
+
parser.add_argument("--mlm_probability", type=float, default=0.15,
|
441 |
+
help="Ratio of tokens to mask for masked language modeling loss")
|
442 |
+
|
443 |
+
parser.add_argument("--config_name", default="", type=str,
|
444 |
+
help="Optional pretrained config name or path if not the same as model_name_or_path")
|
445 |
+
parser.add_argument("--tokenizer_name", default="", type=str,
|
446 |
+
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
|
447 |
+
parser.add_argument("--cache_dir", default="", type=str,
|
448 |
+
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
|
449 |
+
parser.add_argument("--block_size", default=-1, type=int,
|
450 |
+
help="Optional input sequence length after tokenization."
|
451 |
+
"The training dataset will be truncated in block of this size for training."
|
452 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens).")
|
453 |
+
parser.add_argument("--do_train", action='store_true',
|
454 |
+
help="Whether to run training.")
|
455 |
+
parser.add_argument("--do_eval", action='store_true',
|
456 |
+
help="Whether to run eval on the dev set.")
|
457 |
+
parser.add_argument("--do_test", action='store_true',
|
458 |
+
help="Whether to run eval on the dev set.")
|
459 |
+
parser.add_argument("--evaluate_during_training", action='store_true',
|
460 |
+
help="Run evaluation during training at each logging step.")
|
461 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
462 |
+
help="Set this flag if you are using an uncased model.")
|
463 |
+
|
464 |
+
parser.add_argument("--train_batch_size", default=4, type=int,
|
465 |
+
help="Batch size per GPU/CPU for training.")
|
466 |
+
parser.add_argument("--eval_batch_size", default=4, type=int,
|
467 |
+
help="Batch size per GPU/CPU for evaluation.")
|
468 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
469 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
470 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
471 |
+
help="The initial learning rate for Adam.")
|
472 |
+
parser.add_argument("--weight_decay", default=0.0, type=float,
|
473 |
+
help="Weight deay if we apply some.")
|
474 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
475 |
+
help="Epsilon for Adam optimizer.")
|
476 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
477 |
+
help="Max gradient norm.")
|
478 |
+
parser.add_argument("--num_train_epochs", default=1.0, type=float,
|
479 |
+
help="Total number of training epochs to perform.")
|
480 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
481 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
482 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
483 |
+
help="Linear warmup over warmup_steps.")
|
484 |
+
|
485 |
+
parser.add_argument('--logging_steps', type=int, default=50,
|
486 |
+
help="Log every X updates steps.")
|
487 |
+
parser.add_argument('--save_steps', type=int, default=50,
|
488 |
+
help="Save checkpoint every X updates steps.")
|
489 |
+
parser.add_argument('--save_total_limit', type=int, default=None,
|
490 |
+
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
|
491 |
+
parser.add_argument("--eval_all_checkpoints", action='store_true',
|
492 |
+
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
|
493 |
+
parser.add_argument("--no_cuda", action='store_true',
|
494 |
+
help="Avoid using CUDA when available")
|
495 |
+
parser.add_argument('--overwrite_output_dir', action='store_true',
|
496 |
+
help="Overwrite the content of the output directory")
|
497 |
+
parser.add_argument('--overwrite_cache', action='store_true',
|
498 |
+
help="Overwrite the cached training and evaluation sets")
|
499 |
+
parser.add_argument('--seed', type=int, default=42,
|
500 |
+
help="random seed for initialization")
|
501 |
+
parser.add_argument('--epoch', type=int, default=42,
|
502 |
+
help="random seed for initialization")
|
503 |
+
parser.add_argument('--fp16', action='store_true',
|
504 |
+
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
505 |
+
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
506 |
+
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
507 |
+
"See details at https://nvidia.github.io/apex/amp.html")
|
508 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
509 |
+
help="For distributed training: local_rank")
|
510 |
+
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
|
511 |
+
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
|
512 |
+
|
513 |
+
|
514 |
+
args = parser.parse_args()
|
515 |
+
|
516 |
+
|
517 |
+
# Setup distant debugging if needed
|
518 |
+
if args.server_ip and args.server_port:
|
519 |
+
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
520 |
+
import ptvsd
|
521 |
+
print("Waiting for debugger attach")
|
522 |
+
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
523 |
+
ptvsd.wait_for_attach()
|
524 |
+
|
525 |
+
# Setup CUDA, GPU & distributed training
|
526 |
+
if args.local_rank == -1 or args.no_cuda:
|
527 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
528 |
+
args.n_gpu = torch.cuda.device_count()
|
529 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
530 |
+
torch.cuda.set_device(args.local_rank)
|
531 |
+
device = torch.device("cuda", args.local_rank)
|
532 |
+
torch.distributed.init_process_group(backend='nccl')
|
533 |
+
args.n_gpu = 1
|
534 |
+
args.device = device
|
535 |
+
args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
|
536 |
+
args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
|
537 |
+
# Setup logging
|
538 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
539 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
540 |
+
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
541 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
542 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
543 |
+
|
544 |
+
|
545 |
+
# Set seed
|
546 |
+
set_seed(args.seed)
|
547 |
+
|
548 |
+
# Load pretrained model and tokenizer
|
549 |
+
if args.local_rank not in [-1, 0]:
|
550 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
|
551 |
+
|
552 |
+
args.start_epoch = 0
|
553 |
+
args.start_step = 0
|
554 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
555 |
+
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
|
556 |
+
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
|
557 |
+
args.config_name = os.path.join(checkpoint_last, 'config.json')
|
558 |
+
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
|
559 |
+
with open(idx_file, encoding='utf-8') as idxf:
|
560 |
+
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
|
561 |
+
|
562 |
+
step_file = os.path.join(checkpoint_last, 'step_file.txt')
|
563 |
+
if os.path.exists(step_file):
|
564 |
+
with open(step_file, encoding='utf-8') as stepf:
|
565 |
+
args.start_step = int(stepf.readlines()[0].strip())
|
566 |
+
|
567 |
+
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
|
568 |
+
|
569 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
570 |
+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
|
571 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
572 |
+
config.num_labels=1
|
573 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,
|
574 |
+
do_lower_case=args.do_lower_case,
|
575 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
576 |
+
if args.block_size <= 0:
|
577 |
+
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
|
578 |
+
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
|
579 |
+
if args.model_name_or_path:
|
580 |
+
model = model_class.from_pretrained(args.model_name_or_path,
|
581 |
+
from_tf=bool('.ckpt' in args.model_name_or_path),
|
582 |
+
config=config,
|
583 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
584 |
+
else:
|
585 |
+
model = model_class(config)
|
586 |
+
|
587 |
+
model=Model(model,config,tokenizer,args)
|
588 |
+
if args.local_rank == 0:
|
589 |
+
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
|
590 |
+
|
591 |
+
logger.info("Training/evaluation parameters %s", args)
|
592 |
+
|
593 |
+
# Training
|
594 |
+
if args.do_train:
|
595 |
+
if args.local_rank not in [-1, 0]:
|
596 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
|
597 |
+
|
598 |
+
train_dataset = TextDataset(tokenizer, args,args.train_data_file)
|
599 |
+
if args.local_rank == 0:
|
600 |
+
torch.distributed.barrier()
|
601 |
+
|
602 |
+
train(args, train_dataset, model, tokenizer)
|
603 |
+
|
604 |
+
|
605 |
+
|
606 |
+
# Evaluation
|
607 |
+
results = {}
|
608 |
+
if args.do_eval and args.local_rank in [-1, 0]:
|
609 |
+
checkpoint_prefix = 'epoch_1/subject_model.pth' #'checkpoint-best-map/model.bin'
|
610 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
611 |
+
model.load_state_dict(torch.load(output_dir),strict=False)
|
612 |
+
model.to(args.device)
|
613 |
+
result=evaluate(args, model, tokenizer)
|
614 |
+
logger.info("***** Eval results *****")
|
615 |
+
for key in sorted(result.keys()):
|
616 |
+
logger.info(" %s = %s", key, str(round(result[key],4)))
|
617 |
+
|
618 |
+
if args.do_test and args.local_rank in [-1, 0]:
|
619 |
+
checkpoint_prefix = 'epoch_1/subject_model.pth' #'checkpoint-best-map/model.bin'
|
620 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
621 |
+
model.load_state_dict(torch.load(output_dir),strict=False)
|
622 |
+
model.to(args.device)
|
623 |
+
test(args, model, tokenizer)
|
624 |
+
|
625 |
+
return results
|
626 |
+
|
627 |
+
|
628 |
+
if __name__ == "__main__":
|
629 |
+
main()
|
630 |
+
|
631 |
+
|
632 |
+
|
Code-Code/Clone-detection-POJ-104/code/test.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--config_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--tokenizer_name=roberta-base \
|
7 |
+
--do_test \
|
8 |
+
--train_data_file=../dataset/train.jsonl \
|
9 |
+
--test_data_file=../dataset/valid.jsonl \
|
10 |
+
--epoch 2 \
|
11 |
+
--block_size 400 \
|
12 |
+
--train_batch_size 8 \
|
13 |
+
--eval_batch_size 16 \
|
14 |
+
--learning_rate 2e-5 \
|
15 |
+
--max_grad_norm 1.0 \
|
16 |
+
--evaluate_during_training \
|
17 |
+
--seed 123456
|
Code-Code/Clone-detection-POJ-104/code/train.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--config_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--tokenizer_name=roberta-base \
|
7 |
+
--do_train \
|
8 |
+
--train_data_file=../dataset/train.jsonl \
|
9 |
+
--eval_data_file=../dataset/valid.jsonl \
|
10 |
+
--test_data_file=../dataset/test.jsonl \
|
11 |
+
--epoch 2 \
|
12 |
+
--block_size 400 \
|
13 |
+
--train_batch_size 8 \
|
14 |
+
--eval_batch_size 16 \
|
15 |
+
--learning_rate 2e-5 \
|
16 |
+
--max_grad_norm 1.0 \
|
17 |
+
--evaluate_during_training \
|
18 |
+
--seed 123456
|
Code-Code/Clone-detection-POJ-104/dataset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c13009574c8c3c85c4ec26f6e33e53765479f41fa20239578b473fd11df4d01
|
3 |
+
size 7269797
|
Code-Code/CodeCompletion-token/code/beam.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import copy
|
6 |
+
|
7 |
+
class Beam(object):
|
8 |
+
def __init__(self, size, sos, eos):
|
9 |
+
self.size = size
|
10 |
+
self.tt = torch.cuda
|
11 |
+
# The score for each translation on the beam.
|
12 |
+
self.scores = self.tt.FloatTensor(size).zero_()
|
13 |
+
# The backpointers at each time-step.
|
14 |
+
self.prevKs = []
|
15 |
+
# The outputs at each time-step.
|
16 |
+
self.nextYs = [self.tt.LongTensor(size)
|
17 |
+
.fill_(0)]
|
18 |
+
self.nextYs[0][:] = sos
|
19 |
+
# Has EOS topped the beam yet.
|
20 |
+
self._eos = eos
|
21 |
+
self.eosTop = False
|
22 |
+
# Time and k pair for finished.
|
23 |
+
self.finished = []
|
24 |
+
|
25 |
+
def getCurrentState(self):
|
26 |
+
"Get the outputs for the current timestep."
|
27 |
+
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1)
|
28 |
+
return batch
|
29 |
+
|
30 |
+
def getCurrentOrigin(self):
|
31 |
+
"Get the backpointers for the current timestep."
|
32 |
+
return self.prevKs[-1]
|
33 |
+
|
34 |
+
def advance(self, wordLk):
|
35 |
+
"""
|
36 |
+
Given prob over words for every last beam `wordLk` and attention
|
37 |
+
`attnOut`: Compute and update the beam search.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
|
41 |
+
* `wordLk`- probs of advancing from the last step (K x words)
|
42 |
+
* `attnOut`- attention at the last step
|
43 |
+
|
44 |
+
Returns: True if beam search is complete.
|
45 |
+
"""
|
46 |
+
numWords = wordLk.size(1)
|
47 |
+
|
48 |
+
# Sum the previous scores.
|
49 |
+
if len(self.prevKs) > 0:
|
50 |
+
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
|
51 |
+
|
52 |
+
# Don't let EOS have children.
|
53 |
+
for i in range(self.nextYs[-1].size(0)):
|
54 |
+
if self.nextYs[-1][i] in self._eos:
|
55 |
+
beamLk[i] = -1e20
|
56 |
+
else:
|
57 |
+
beamLk = wordLk[0]
|
58 |
+
flatBeamLk = beamLk.view(-1)
|
59 |
+
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
|
60 |
+
|
61 |
+
self.scores = bestScores
|
62 |
+
|
63 |
+
# bestScoresId is flattened beam x word array, so calculate which
|
64 |
+
# word and beam each score came from
|
65 |
+
prevK = bestScoresId // numWords
|
66 |
+
self.prevKs.append(prevK)
|
67 |
+
self.nextYs.append((bestScoresId - prevK * numWords))
|
68 |
+
|
69 |
+
|
70 |
+
for i in range(self.nextYs[-1].size(0)):
|
71 |
+
if self.nextYs[-1][i] in self._eos:
|
72 |
+
s = self.scores[i]
|
73 |
+
self.finished.append((s, len(self.nextYs) - 1, i))
|
74 |
+
|
75 |
+
# End condition is when top-of-beam is EOS and no global score.
|
76 |
+
if self.nextYs[-1][0] in self._eos:
|
77 |
+
self.eosTop = True
|
78 |
+
|
79 |
+
def done(self):
|
80 |
+
return self.eosTop and len(self.finished) >=self.size
|
81 |
+
|
82 |
+
def getFinal(self):
|
83 |
+
if len(self.finished) == 0:
|
84 |
+
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
|
85 |
+
self.finished.sort(key=lambda a: -a[0])
|
86 |
+
if len(self.finished) != self.size:
|
87 |
+
unfinished=[]
|
88 |
+
for i in range(self.nextYs[-1].size(0)):
|
89 |
+
if self.nextYs[-1][i] not in self._eos:
|
90 |
+
s = self.scores[i]
|
91 |
+
unfinished.append((s, len(self.nextYs) - 1, i))
|
92 |
+
unfinished.sort(key=lambda a: -a[0])
|
93 |
+
self.finished+=unfinished[:self.size-len(self.finished)]
|
94 |
+
return self.finished[:self.size]
|
95 |
+
|
96 |
+
def getHyp(self, beam_res):
|
97 |
+
"""
|
98 |
+
Walk back to construct the full hypothesis.
|
99 |
+
"""
|
100 |
+
hyps=[]
|
101 |
+
for _,timestep, k in beam_res:
|
102 |
+
hyp = []
|
103 |
+
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
|
104 |
+
hyp.append(self.nextYs[j+1][k])
|
105 |
+
k = self.prevKs[j][k]
|
106 |
+
hyps.append(hyp[::-1])
|
107 |
+
return hyps
|
108 |
+
|
109 |
+
def buildTargetTokens(self, preds):
|
110 |
+
sentence=[]
|
111 |
+
for pred in preds:
|
112 |
+
tokens = []
|
113 |
+
for tok in pred:
|
114 |
+
tokens.append(tok)
|
115 |
+
if tok in self._eos:
|
116 |
+
break
|
117 |
+
sentence.append(tokens)
|
118 |
+
return sentence
|
Code-Code/CodeCompletion-token/code/dataset.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
from __future__ import absolute_import, division, print_function
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import glob
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
import pickle
|
10 |
+
import random
|
11 |
+
import re
|
12 |
+
import gc
|
13 |
+
import shutil
|
14 |
+
import json
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
19 |
+
from torch.utils.data.distributed import DistributedSampler
|
20 |
+
|
21 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
22 |
+
BertConfig, BertForMaskedLM, BertTokenizer,
|
23 |
+
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
|
24 |
+
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
|
25 |
+
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
|
26 |
+
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
|
27 |
+
|
28 |
+
class TextDataset(Dataset):
|
29 |
+
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024):
|
30 |
+
if args.local_rank==-1:
|
31 |
+
local_rank=0
|
32 |
+
world_size=1
|
33 |
+
else:
|
34 |
+
local_rank=args.local_rank
|
35 |
+
world_size=torch.distributed.get_world_size()
|
36 |
+
|
37 |
+
if not os.path.exists(args.output_dir):
|
38 |
+
os.makedirs(args.output_dir)
|
39 |
+
cached_file = os.path.join(args.output_dir, file_type+"_langs_%s"%(args.langs)+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank))
|
40 |
+
if os.path.exists(cached_file) and not args.overwrite_cache:
|
41 |
+
if file_type == 'train':
|
42 |
+
logger.warning("Loading features from cached file %s", cached_file)
|
43 |
+
with open(cached_file, 'rb') as handle:
|
44 |
+
self.inputs = pickle.load(handle)
|
45 |
+
|
46 |
+
else:
|
47 |
+
self.inputs = []
|
48 |
+
if args.langs == 'all':
|
49 |
+
langs = os.listdir(args.data_dir)
|
50 |
+
else:
|
51 |
+
langs = [args.langs]
|
52 |
+
|
53 |
+
data=[]
|
54 |
+
for lang in langs:
|
55 |
+
datafile = os.path.join(args.data_dir, lang, file_type+'.pkl')
|
56 |
+
if file_type == 'train':
|
57 |
+
logger.warning("Creating features from dataset file at %s", datafile)
|
58 |
+
# with open(datafile) as f:
|
59 |
+
# data.extend([json.loads(x)['code'] for idx,x in enumerate(f.readlines()) if idx%world_size==local_rank])
|
60 |
+
dataset = pickle.load(open(datafile, 'rb'))
|
61 |
+
data.extend(['<s> '+' '.join(x['function'].split())+' </s>' for idx,x in enumerate(dataset) if idx%world_size==local_rank])
|
62 |
+
|
63 |
+
# random.shuffle(data)
|
64 |
+
data = data
|
65 |
+
length = len(data)
|
66 |
+
logger.warning("Data size: %d"%(length))
|
67 |
+
input_ids = []
|
68 |
+
for idx,x in enumerate(data):
|
69 |
+
try:
|
70 |
+
input_ids.extend(tokenizer.encode(x))
|
71 |
+
except Exception:
|
72 |
+
pass
|
73 |
+
if idx % (length//10) == 0:
|
74 |
+
percent = idx / (length//10) * 10
|
75 |
+
logger.warning("Rank %d, load %d"%(local_rank, percent))
|
76 |
+
del data
|
77 |
+
gc.collect()
|
78 |
+
|
79 |
+
length = len(input_ids)
|
80 |
+
for i in range(0, length-block_size, block_size):
|
81 |
+
self.inputs.append(input_ids[i : i + block_size])
|
82 |
+
del input_ids
|
83 |
+
gc.collect()
|
84 |
+
|
85 |
+
if file_type == 'train':
|
86 |
+
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs)))
|
87 |
+
logger.warning("Saving features into cached file %s", cached_file)
|
88 |
+
with open(cached_file, 'wb') as handle:
|
89 |
+
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
90 |
+
|
91 |
+
def __len__(self):
|
92 |
+
return len(self.inputs)
|
93 |
+
|
94 |
+
def __getitem__(self, item):
|
95 |
+
return torch.tensor(self.inputs[item])
|
96 |
+
|
97 |
+
class finetuneDataset(Dataset):
|
98 |
+
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024):
|
99 |
+
if args.local_rank==-1:
|
100 |
+
local_rank=0
|
101 |
+
world_size=1
|
102 |
+
else:
|
103 |
+
local_rank=args.local_rank
|
104 |
+
world_size=torch.distributed.get_world_size()
|
105 |
+
|
106 |
+
if not os.path.exists(args.output_dir):
|
107 |
+
os.makedirs(args.output_dir)
|
108 |
+
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank))
|
109 |
+
if os.path.exists(cached_file) and not args.overwrite_cache:
|
110 |
+
if file_type == 'train':
|
111 |
+
logger.warning("Loading features from cached file %s", cached_file)
|
112 |
+
with open(cached_file, 'rb') as handle:
|
113 |
+
self.inputs = pickle.load(handle)
|
114 |
+
|
115 |
+
else:
|
116 |
+
self.inputs = []
|
117 |
+
|
118 |
+
datafile = os.path.join(args.data_dir, f"{file_type}.txt")
|
119 |
+
if file_type == 'train':
|
120 |
+
logger.warning("Creating features from dataset file at %s", datafile)
|
121 |
+
with open(datafile) as f:
|
122 |
+
data = f.readlines()
|
123 |
+
|
124 |
+
length = len(data)
|
125 |
+
logger.info("Data size: %d"%(length))
|
126 |
+
input_ids = []
|
127 |
+
for idx,x in enumerate(data):
|
128 |
+
x = x.strip()
|
129 |
+
if x.startswith("<s>") and x.endswith("</s>"):
|
130 |
+
pass
|
131 |
+
else:
|
132 |
+
x = "<s> " + x + " </s>"
|
133 |
+
try:
|
134 |
+
input_ids.extend(tokenizer.encode(x))
|
135 |
+
except Exception:
|
136 |
+
pass
|
137 |
+
if idx % (length//10) == 0:
|
138 |
+
percent = idx / (length//10) * 10
|
139 |
+
logger.warning("Rank %d, load %d"%(local_rank, percent))
|
140 |
+
del data
|
141 |
+
gc.collect()
|
142 |
+
|
143 |
+
length = len(input_ids) // world_size
|
144 |
+
logger.info(f"tokens: {length*world_size}")
|
145 |
+
input_ids = input_ids[local_rank*length: (local_rank+1)*length]
|
146 |
+
|
147 |
+
for i in range(0, length-block_size, block_size):
|
148 |
+
self.inputs.append(input_ids[i : i + block_size])
|
149 |
+
del input_ids
|
150 |
+
gc.collect()
|
151 |
+
|
152 |
+
if file_type == 'train':
|
153 |
+
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs)))
|
154 |
+
logger.warning("Saving features into cached file %s", cached_file)
|
155 |
+
with open(cached_file, 'wb') as handle:
|
156 |
+
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
157 |
+
|
158 |
+
def __len__(self):
|
159 |
+
return len(self.inputs)
|
160 |
+
|
161 |
+
def __getitem__(self, item):
|
162 |
+
return torch.tensor(self.inputs[item])
|
163 |
+
|
164 |
+
class EvalDataset(Dataset):
|
165 |
+
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024):
|
166 |
+
if not os.path.exists(args.output_dir):
|
167 |
+
os.makedirs(args.output_dir)
|
168 |
+
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size))
|
169 |
+
if os.path.exists(cached_file) and not args.overwrite_cache:
|
170 |
+
with open(cached_file, 'rb') as handle:
|
171 |
+
self.inputs = pickle.load(handle)
|
172 |
+
|
173 |
+
else:
|
174 |
+
self.inputs = []
|
175 |
+
|
176 |
+
datafile = os.path.join(args.data_dir, f"{file_type}.txt")
|
177 |
+
with open(datafile) as f:
|
178 |
+
data = f.readlines()
|
179 |
+
|
180 |
+
length = len(data)
|
181 |
+
logger.info("Data size: %d"%(length))
|
182 |
+
input_ids = []
|
183 |
+
for idx,x in enumerate(data):
|
184 |
+
x = x.strip()
|
185 |
+
if x.startswith("<s>") and x.endswith("</s>"):
|
186 |
+
pass
|
187 |
+
else:
|
188 |
+
x = "<s> " + x + " </s>"
|
189 |
+
try:
|
190 |
+
input_ids.extend(tokenizer.encode(x))
|
191 |
+
except Exception:
|
192 |
+
pass
|
193 |
+
if idx % (length//10) == 0:
|
194 |
+
percent = idx / (length//10) * 10
|
195 |
+
logger.warning("load %d"%(percent))
|
196 |
+
del data
|
197 |
+
gc.collect()
|
198 |
+
|
199 |
+
logger.info(f"tokens: {len(input_ids)}")
|
200 |
+
self.split(input_ids, tokenizer, logger, block_size=block_size)
|
201 |
+
del input_ids
|
202 |
+
gc.collect()
|
203 |
+
|
204 |
+
with open(cached_file, 'wb') as handle:
|
205 |
+
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
206 |
+
|
207 |
+
def split(self, input_ids, tokenizer, logger, block_size=1024):
|
208 |
+
sample = []
|
209 |
+
i = 0
|
210 |
+
while i < len(input_ids):
|
211 |
+
sample = input_ids[i: i+block_size]
|
212 |
+
if len(sample) == block_size:
|
213 |
+
for j in range(block_size):
|
214 |
+
if tokenizer.convert_ids_to_tokens(sample[block_size-1-j])[0] == '\u0120' or tokenizer.convert_ids_to_tokens(sample[block_size-1-j]).startswith("<NUM_LIT"):
|
215 |
+
break
|
216 |
+
if sample[block_size-1-j] in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id]:
|
217 |
+
if sample[block_size-1-j] != tokenizer.bos_token_id:
|
218 |
+
j -= 1
|
219 |
+
break
|
220 |
+
if j == block_size-1:
|
221 |
+
print(tokenizer.decode(sample))
|
222 |
+
exit()
|
223 |
+
sample = sample[: block_size-1-j]
|
224 |
+
# print(len(sample))
|
225 |
+
i += len(sample)
|
226 |
+
pad_len = block_size-len(sample)
|
227 |
+
sample += [tokenizer.pad_token_id]*pad_len
|
228 |
+
self.inputs.append(sample)
|
229 |
+
|
230 |
+
if len(self.inputs) % 10000 == 0:
|
231 |
+
logger.info(f"{len(self.inputs)} samples")
|
232 |
+
|
233 |
+
|
234 |
+
def __len__(self):
|
235 |
+
return len(self.inputs)
|
236 |
+
|
237 |
+
def __getitem__(self, item):
|
238 |
+
return torch.tensor(self.inputs[item])
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
class lineDataset(Dataset):
|
243 |
+
def __init__(self, tokenizer, args, logger, file_type='test', block_size=924):
|
244 |
+
datafile = os.path.join(args.data_dir, f"{file_type}.json")
|
245 |
+
with open(datafile) as f:
|
246 |
+
datas = f.readlines()
|
247 |
+
|
248 |
+
length = len(datas)
|
249 |
+
logger.info("Data size: %d"%(length))
|
250 |
+
self.inputs = []
|
251 |
+
self.gts = []
|
252 |
+
for data in datas:
|
253 |
+
data = json.loads(data.strip())
|
254 |
+
self.inputs.append(tokenizer.encode(data["input"])[-block_size:])
|
255 |
+
self.gts.append(data["gt"])
|
256 |
+
|
257 |
+
def __len__(self):
|
258 |
+
return len(self.inputs)
|
259 |
+
|
260 |
+
def __getitem__(self, item):
|
261 |
+
return torch.tensor(self.inputs[item]), self.gts[item]
|
Code-Code/CodeCompletion-token/code/eval.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LANG=java # set python for py150
|
2 |
+
DATADIR=../dataset/javaCorpus/token_completion
|
3 |
+
LITFILE=../dataset/javaCorpus/literals.json
|
4 |
+
OUTPUTDIR=../model/javaCorpus
|
5 |
+
PRETRAINDIR=microsoft/CodeGPT-small-java # microsoft/CodeGPT-small-py for py150
|
6 |
+
LOGFILE=eval_javaCorpus.log
|
7 |
+
|
8 |
+
CUDA_VISIBLE_DEVICES=0 python run_lm.py \
|
9 |
+
--data_dir=$DATADIR \
|
10 |
+
--lit_file=$LITFILE \
|
11 |
+
--langs=$LANG \
|
12 |
+
--output_dir=$OUTPUTDIR \
|
13 |
+
--pretrain_dir=$OUTPUTDIR \
|
14 |
+
--log_file=$LOGFILE \
|
15 |
+
--model_type=gpt2 \
|
16 |
+
--block_size=512 \
|
17 |
+
--do_eval \
|
18 |
+
--per_gpu_eval_batch_size=16 \
|
19 |
+
--logging_steps=100 \
|
20 |
+
--seed=42
|
Code-Code/CodeCompletion-token/code/evaluate.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
python evaluator.py \
|
2 |
+
-a=../dataset/javaCorpus/token_completion/test.txt \
|
3 |
+
-p=../model/javaCorpus/predictions.txt
|
Code-Code/CodeCompletion-token/code/evaluator.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
|
10 |
+
def main():
|
11 |
+
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for code completion (token level).')
|
12 |
+
parser.add_argument('--answers', '-a', required=True, help="filename of the labels, in txt format.")
|
13 |
+
parser.add_argument('--predictions', '-p', required=True, help="filename of the leaderboard predictions, in txt format.")
|
14 |
+
args = parser.parse_args()
|
15 |
+
|
16 |
+
preds = open(args.predictions, "r").readlines()
|
17 |
+
gts = open(args.answers, "r").readlines()
|
18 |
+
|
19 |
+
assert len(preds) == len(gts), f"Samples of predictions and answers are not equal, {len(preds)}: {len(gts)}"
|
20 |
+
|
21 |
+
total = 0
|
22 |
+
correct = 0.0
|
23 |
+
for pred, gt in zip(preds, gts):
|
24 |
+
pred = pred.split()
|
25 |
+
gt = gt.split()
|
26 |
+
assert len(pred) == len(gt), f"Sequence length of prediction and answer are not equal, {len(pred)}: {len(gt)}"
|
27 |
+
for x, y in zip(pred, gt):
|
28 |
+
if y not in ["<s>", "</s>", "<EOL>", "<pad>"]:
|
29 |
+
total += 1
|
30 |
+
if x == y:
|
31 |
+
correct += 1
|
32 |
+
|
33 |
+
logger.info(f"Total {total} tokens, accuracy: {round(correct/total*100, 2)}")
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
main()
|
Code-Code/CodeCompletion-token/code/model.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
class RNNModel(nn.Module):
|
9 |
+
"""Container module with an encoder, a recurrent module, and a decoder."""
|
10 |
+
|
11 |
+
def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False):
|
12 |
+
super(RNNModel, self).__init__()
|
13 |
+
self.ntoken = ntoken
|
14 |
+
self.drop = nn.Dropout(dropout)
|
15 |
+
self.encoder = nn.Embedding(ntoken, ninp)
|
16 |
+
self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout, batch_first=True)
|
17 |
+
self.decoder = nn.Linear(nhid, ntoken)
|
18 |
+
self.criterion = nn.CrossEntropyLoss()
|
19 |
+
|
20 |
+
# Optionally tie weights as in:
|
21 |
+
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
|
22 |
+
# https://arxiv.org/abs/1608.05859
|
23 |
+
# and
|
24 |
+
# "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016)
|
25 |
+
# https://arxiv.org/abs/1611.01462
|
26 |
+
if tie_weights:
|
27 |
+
if nhid != ninp:
|
28 |
+
raise ValueError('When using the tied flag, nhid must be equal to emsize')
|
29 |
+
self.decoder.weight = self.encoder.weight
|
30 |
+
|
31 |
+
self.init_weights()
|
32 |
+
|
33 |
+
self.nhid = nhid
|
34 |
+
self.nlayers = nlayers
|
35 |
+
|
36 |
+
def init_weights(self):
|
37 |
+
initrange = 0.1
|
38 |
+
nn.init.uniform_(self.encoder.weight, -initrange, initrange)
|
39 |
+
nn.init.zeros_(self.decoder.weight)
|
40 |
+
nn.init.uniform_(self.decoder.weight, -initrange, initrange)
|
41 |
+
|
42 |
+
def forward(self, input, hidden=None, labels=None):
|
43 |
+
emb = self.encoder(input)
|
44 |
+
if hidden is not None:
|
45 |
+
output, hidden = self.rnn(emb, hidden)
|
46 |
+
else:
|
47 |
+
output, hidden = self.rnn(emb)
|
48 |
+
output = self.drop(output)
|
49 |
+
output = self.decoder(output)
|
50 |
+
# decoded = decoded.view(-1, self.ntoken)
|
51 |
+
# output = F.log_softmax(decoded, dim=1)
|
52 |
+
if labels is not None:
|
53 |
+
shift_logits = output[..., :-1, :].contiguous()
|
54 |
+
shift_labels = labels[..., 1:].contiguous()
|
55 |
+
loss = self.criterion(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
56 |
+
return loss, output, hidden
|
57 |
+
else:
|
58 |
+
return output, hidden
|
59 |
+
|
60 |
+
def init_hidden(self, bsz):
|
61 |
+
weight = next(self.parameters())
|
62 |
+
if self.rnn_type == 'LSTM':
|
63 |
+
return (weight.new_zeros(self.nlayers, bsz, self.nhid),
|
64 |
+
weight.new_zeros(self.nlayers, bsz, self.nhid))
|
65 |
+
else:
|
66 |
+
return weight.new_zeros(self.nlayers, bsz, self.nhid)
|
67 |
+
|
68 |
+
|
Code-Code/CodeCompletion-token/code/run_lm.py
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Code completion (both token level and line level) pipeline in CodeXGLUE
|
18 |
+
"""
|
19 |
+
|
20 |
+
from __future__ import absolute_import, division, print_function
|
21 |
+
|
22 |
+
import argparse
|
23 |
+
import glob
|
24 |
+
import logging
|
25 |
+
import os
|
26 |
+
import pickle
|
27 |
+
import random
|
28 |
+
import re
|
29 |
+
import shutil
|
30 |
+
import json
|
31 |
+
|
32 |
+
import numpy as np
|
33 |
+
import torch
|
34 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
35 |
+
from torch.utils.data.distributed import DistributedSampler
|
36 |
+
from dataset import TextDataset, finetuneDataset, EvalDataset, lineDataset
|
37 |
+
from beam import Beam
|
38 |
+
|
39 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
40 |
+
BertConfig, BertForMaskedLM, BertTokenizer,
|
41 |
+
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
|
42 |
+
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
|
43 |
+
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
|
44 |
+
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
|
45 |
+
from model import RNNModel
|
46 |
+
|
47 |
+
# logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
48 |
+
# datefmt='%m/%d/%Y %H:%M:%S',
|
49 |
+
# level=logging.INFO)
|
50 |
+
logger = logging.getLogger(__name__)
|
51 |
+
|
52 |
+
MODEL_CLASSES = {
|
53 |
+
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
|
54 |
+
'rnn': (GPT2Config, RNNModel, GPT2Tokenizer),
|
55 |
+
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
|
56 |
+
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
|
57 |
+
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
|
58 |
+
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
def load_and_cache_examples(args, tokenizer, evaluate=False):
|
64 |
+
if args.not_pretrain:
|
65 |
+
dataset = finetuneDataset(tokenizer, args, logger, file_type='dev' if evaluate else 'train',
|
66 |
+
block_size=args.block_size)
|
67 |
+
else:
|
68 |
+
dataset = TextDataset(tokenizer, args, logger, file_type='dev' if evaluate else 'train',
|
69 |
+
block_size=args.block_size)
|
70 |
+
return dataset
|
71 |
+
|
72 |
+
def set_seed(args):
|
73 |
+
random.seed(args.seed)
|
74 |
+
np.random.seed(args.seed)
|
75 |
+
torch.manual_seed(args.seed)
|
76 |
+
if args.n_gpu > 0:
|
77 |
+
torch.cuda.manual_seed_all(args.seed)
|
78 |
+
|
79 |
+
def update_config(args, config):
|
80 |
+
# config.n_positions = config.n_ctx = args.block_size
|
81 |
+
config.vocab_size = args.vocab_size
|
82 |
+
|
83 |
+
def get_special_tokens(path):
|
84 |
+
lits = json.load(open(path))
|
85 |
+
tokens = ["<STR_LIT>", "<NUM_LIT>", "<CHAR_LIT>"]
|
86 |
+
for lit in lits["str"]:
|
87 |
+
tokens.append(f"<STR_LIT:{lit}>")
|
88 |
+
for lit in lits["num"]:
|
89 |
+
tokens.append(f"<NUM_LIT:{lit}>")
|
90 |
+
for lit in lits["char"]:
|
91 |
+
tokens.append(f"<CHAR_LIT:{lit}>")
|
92 |
+
return tokens
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
def train(args, train_dataset, model, tokenizer, fh, pool):
|
97 |
+
""" Train the model """
|
98 |
+
if args.local_rank in [-1, 0]:
|
99 |
+
args.tensorboard_dir = os.path.join(args.output_dir, 'tensorboard')
|
100 |
+
if not os.path.exists(args.tensorboard_dir):
|
101 |
+
os.makedirs(args.tensorboard_dir)
|
102 |
+
|
103 |
+
args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
104 |
+
train_sampler = RandomSampler(train_dataset)
|
105 |
+
|
106 |
+
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size, drop_last=True)
|
107 |
+
total_examples = len(train_dataset) * (
|
108 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1)
|
109 |
+
batch_size = args.batch_size * args.gradient_accumulation_steps * (
|
110 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1)
|
111 |
+
# if args.max_steps > 0:
|
112 |
+
# t_total = args.max_steps
|
113 |
+
# args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
114 |
+
if args.num_train_epochs > 0:
|
115 |
+
t_total = total_examples // batch_size * args.num_train_epochs
|
116 |
+
args.max_steps = t_total
|
117 |
+
model.to(args.device)
|
118 |
+
if args.local_rank not in [-1, 0]:
|
119 |
+
torch.distributed.barrier()
|
120 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
121 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
122 |
+
optimizer_grouped_parameters = [
|
123 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
124 |
+
'weight_decay': args.weight_decay},
|
125 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
126 |
+
]
|
127 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
128 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
|
129 |
+
num_training_steps=t_total)
|
130 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
131 |
+
# scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
|
132 |
+
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
|
133 |
+
# if os.path.exists(scheduler_last):
|
134 |
+
# scheduler.load_state_dict(torch.load(scheduler_last, map_location="cpu"))
|
135 |
+
if os.path.exists(optimizer_last):
|
136 |
+
logger.warning(f"Loading optimizer from {optimizer_last}")
|
137 |
+
optimizer.load_state_dict(torch.load(optimizer_last, map_location="cpu"))
|
138 |
+
if args.local_rank == 0:
|
139 |
+
torch.distributed.barrier()
|
140 |
+
if args.fp16:
|
141 |
+
try:
|
142 |
+
from apex import amp
|
143 |
+
except ImportError:
|
144 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
145 |
+
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
146 |
+
|
147 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
148 |
+
if args.n_gpu > 1:
|
149 |
+
model = torch.nn.DataParallel(model)
|
150 |
+
|
151 |
+
# Distributed training (should be after apex fp16 initialization)
|
152 |
+
if args.local_rank != -1:
|
153 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank%args.gpu_per_node],
|
154 |
+
output_device=args.local_rank%args.gpu_per_node)
|
155 |
+
|
156 |
+
# Train!
|
157 |
+
logger.info("***** Running training *****")
|
158 |
+
logger.info(" Num examples = %d", total_examples )
|
159 |
+
logger.info(" Num epoch = %d", t_total*batch_size//total_examples)
|
160 |
+
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
161 |
+
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", batch_size)
|
162 |
+
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
163 |
+
logger.info(" Total optimization steps = %d", t_total)
|
164 |
+
|
165 |
+
global_step = args.start_step
|
166 |
+
tr_loss, logging_loss,avg_loss,tr_nb = 0.0, 0.0, 0.0, global_step
|
167 |
+
# model.resize_token_embeddings(len(tokenizer))
|
168 |
+
model.zero_grad()
|
169 |
+
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
|
170 |
+
|
171 |
+
for idx in range(args.start_epoch, int(args.num_train_epochs)):
|
172 |
+
for step, batch in enumerate(train_dataloader):
|
173 |
+
inputs, labels = (batch, batch)
|
174 |
+
inputs = inputs.to(args.device)
|
175 |
+
labels = labels.to(args.device)
|
176 |
+
model.train()
|
177 |
+
outputs = model(inputs, labels=labels)
|
178 |
+
loss = outputs[0]
|
179 |
+
|
180 |
+
if args.n_gpu > 1:
|
181 |
+
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
182 |
+
if args.gradient_accumulation_steps > 1:
|
183 |
+
loss = loss / args.gradient_accumulation_steps
|
184 |
+
|
185 |
+
if args.fp16:
|
186 |
+
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
187 |
+
scaled_loss.backward()
|
188 |
+
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
189 |
+
else:
|
190 |
+
loss.backward()
|
191 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
192 |
+
|
193 |
+
tr_loss += loss.item()
|
194 |
+
|
195 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
196 |
+
optimizer.step()
|
197 |
+
optimizer.zero_grad()
|
198 |
+
scheduler.step()
|
199 |
+
global_step += 1
|
200 |
+
output_flag=True
|
201 |
+
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
|
202 |
+
if global_step % args.logging_steps == 0:
|
203 |
+
logger.info(" steps: %s ppl: %s lr: %s", global_step, round(avg_loss,5), scheduler.get_last_lr()[0])
|
204 |
+
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
205 |
+
# Log metrics
|
206 |
+
logging_loss = tr_loss
|
207 |
+
tr_nb=global_step
|
208 |
+
|
209 |
+
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
210 |
+
checkpoint_prefix = "checkpoint"
|
211 |
+
# Save model checkpoint
|
212 |
+
if args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
|
213 |
+
results = evaluate(args, model, tokenizer, eval_when_training=True)
|
214 |
+
for key, value in results.items():
|
215 |
+
logger.info(" %s = %s", key, round(value,4))
|
216 |
+
output_dir = os.path.join(args.output_dir, '{}-{}-{}'.format(checkpoint_prefix, global_step, round(results['perplexity'],4)))
|
217 |
+
else:
|
218 |
+
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
|
219 |
+
if not os.path.exists(output_dir):
|
220 |
+
os.makedirs(output_dir)
|
221 |
+
model_to_save = (
|
222 |
+
model.module if hasattr(model, "module") else model
|
223 |
+
) # Take care of distributed/parallel training
|
224 |
+
if args.model_type == "rnn":
|
225 |
+
torch.save(model_to_save.state_dict(), os.path.join(output_dir, "model.pt"))
|
226 |
+
else:
|
227 |
+
model_to_save.save_pretrained(output_dir)
|
228 |
+
tokenizer.save_pretrained(output_dir)
|
229 |
+
|
230 |
+
torch.save(args, os.path.join(output_dir, "training_args.bin"))
|
231 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
232 |
+
|
233 |
+
# _rotate_checkpoints(args, checkpoint_prefix)
|
234 |
+
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
|
235 |
+
if not os.path.exists(last_output_dir):
|
236 |
+
os.makedirs(last_output_dir)
|
237 |
+
if args.model_type == "rnn":
|
238 |
+
torch.save(model_to_save.state_dict(), os.path.join(last_output_dir, "model.pt"))
|
239 |
+
else:
|
240 |
+
model_to_save.save_pretrained(last_output_dir)
|
241 |
+
tokenizer.save_pretrained(last_output_dir)
|
242 |
+
idx_file = os.path.join(last_output_dir, 'idx_file.txt')
|
243 |
+
with open(idx_file, 'w', encoding='utf-8') as idxf:
|
244 |
+
idxf.write(str(0) + '\n')
|
245 |
+
|
246 |
+
torch.save(optimizer.state_dict(), os.path.join(last_output_dir, "optimizer.pt"))
|
247 |
+
# torch.save(scheduler.state_dict(), os.path.join(last_output_dir, "scheduler.pt"))
|
248 |
+
logger.info("Saving optimizer and scheduler states to %s", last_output_dir)
|
249 |
+
|
250 |
+
step_file = os.path.join(last_output_dir, 'step_file.txt')
|
251 |
+
with open(step_file, 'w', encoding='utf-8') as stepf:
|
252 |
+
stepf.write(str(global_step) + '\n')
|
253 |
+
|
254 |
+
|
255 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
256 |
+
break
|
257 |
+
|
258 |
+
# 每一轮记录checkpoint
|
259 |
+
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
|
260 |
+
if not os.path.exists(output_dir):
|
261 |
+
os.makedirs(output_dir)
|
262 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
263 |
+
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
|
264 |
+
logger.info("Saving model checkpoint to %s", ckpt_output_path)
|
265 |
+
torch.save(model_to_save.state_dict(), ckpt_output_path)
|
266 |
+
|
267 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
268 |
+
break
|
269 |
+
|
270 |
+
return global_step, tr_loss / global_step
|
271 |
+
|
272 |
+
|
273 |
+
def evaluate(args, model, tokenizer, prefix="", eval_when_training=False):
|
274 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
275 |
+
eval_output_dir = args.output_dir
|
276 |
+
|
277 |
+
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
|
278 |
+
|
279 |
+
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
280 |
+
os.makedirs(eval_output_dir)
|
281 |
+
|
282 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
283 |
+
# Note that DistributedSampler samples randomly
|
284 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
285 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, drop_last=True)
|
286 |
+
|
287 |
+
# multi-gpu evaluate
|
288 |
+
if args.n_gpu > 1 and eval_when_training is False:
|
289 |
+
model = torch.nn.DataParallel(model)
|
290 |
+
|
291 |
+
# Eval!
|
292 |
+
#logger.info("***** Running evaluation {} *****".format(prefix))
|
293 |
+
#logger.info(" Num examples = %d", len(eval_dataset))
|
294 |
+
#logger.info(" Batch size = %d", args.eval_batch_size)
|
295 |
+
eval_loss = 0.0
|
296 |
+
nb_eval_steps = 0
|
297 |
+
model.eval()
|
298 |
+
|
299 |
+
for batch in eval_dataloader:
|
300 |
+
inputs, labels = (batch, batch)
|
301 |
+
inputs = inputs.to(args.device)
|
302 |
+
labels = labels.to(args.device)
|
303 |
+
|
304 |
+
with torch.no_grad():
|
305 |
+
outputs = model(inputs, labels=labels)
|
306 |
+
lm_loss = outputs[0]
|
307 |
+
eval_loss += lm_loss.mean().item()
|
308 |
+
nb_eval_steps += 1
|
309 |
+
|
310 |
+
eval_loss = eval_loss / nb_eval_steps
|
311 |
+
perplexity = torch.exp(torch.tensor(eval_loss))
|
312 |
+
|
313 |
+
result = {
|
314 |
+
"perplexity": float(perplexity)
|
315 |
+
}
|
316 |
+
|
317 |
+
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
|
318 |
+
with open(output_eval_file, "w") as writer:
|
319 |
+
#logger.info("***** Eval results {} *****".format(prefix))
|
320 |
+
for key in sorted(result.keys()):
|
321 |
+
#logger.info(" %s = %s", key, str(result[key]))
|
322 |
+
writer.write("%s = %s\n" % (key, str(result[key])))
|
323 |
+
|
324 |
+
return result
|
325 |
+
|
326 |
+
def eval_acc(args, model, tokenizer, file_type='test'):
|
327 |
+
"""
|
328 |
+
Evaluate token level code completion on accuracy.
|
329 |
+
|
330 |
+
This function can only used to evaluate accuracy, but not inference, because the inputs are previous sub-tokens but not tokens.
|
331 |
+
But it can be guaranteed that the accuracy in this function is the same as the real token level completion.
|
332 |
+
The reason is:
|
333 |
+
Assuming the inputs are "context_len = 100 <EOL> masks = np . zeros (", and the ground truth is "context_len".
|
334 |
+
Due to our bpe encoding, the model have to outputs "context", "_" and "len" in 3 time step, i.e. gt0="context", gt1="_", gt2="len".
|
335 |
+
In a real inference scenario:
|
336 |
+
time step 0, inputs "context_len = 100 <EOL> masks = np . zeros ( ", model outputs: out0;
|
337 |
+
time step 1, inputs: in1=out0, outputs: out1
|
338 |
+
... until the model outputs a complete token
|
339 |
+
But in this function, no matter out0 is, in1=gt0="context".
|
340 |
+
That is to say, in this function, we feed ground truth but not output sub-token when we predict the next token which is split by bpe.
|
341 |
+
So obviouly we would get different predictions from the real token completion scenario.
|
342 |
+
However, if we calculate token leval accuracy,
|
343 |
+
if and only if the model predicts every sub-token correctly, the complete token can be seen correct.
|
344 |
+
In this situation, out0==gt0, out1==gt1, so it doesn't matter we feed gt or output to model.
|
345 |
+
In summary, this function can make models oupout the same complete token if this token equals to ground truth,
|
346 |
+
if not, the model might predict a different token from the real completion scenario, but all wrong.
|
347 |
+
So it would not affect the token level accuracy.
|
348 |
+
|
349 |
+
I use this trick to speed up evaluation due to the large test set.
|
350 |
+
"""
|
351 |
+
eval_dataset = EvalDataset(tokenizer, args, logger, file_type=file_type, block_size=args.block_size)
|
352 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
353 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
354 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
355 |
+
model.to(args.device)
|
356 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
357 |
+
if args.n_gpu > 1:
|
358 |
+
model = torch.nn.DataParallel(model)
|
359 |
+
|
360 |
+
# Distributed training (should be after apex fp16 initialization)
|
361 |
+
if args.local_rank != -1:
|
362 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank%args.gpu_per_node],
|
363 |
+
output_device=args.local_rank%args.gpu_per_node)
|
364 |
+
|
365 |
+
def DecodeIds(idxs):
|
366 |
+
codes = ""
|
367 |
+
for idx in idxs:
|
368 |
+
to_add = tokenizer.convert_ids_to_tokens(idx)
|
369 |
+
if tokenizer.convert_ids_to_tokens(idx)[0] == '\u0120':
|
370 |
+
if not codes.endswith(" "):
|
371 |
+
codes += " " + to_add[1:]
|
372 |
+
else:
|
373 |
+
codes += to_add[1:]
|
374 |
+
elif (
|
375 |
+
idx in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id] or
|
376 |
+
tokenizer.convert_ids_to_tokens(idx).startswith("<NUM_LIT")
|
377 |
+
):
|
378 |
+
codes += " " + to_add + " "
|
379 |
+
else:
|
380 |
+
codes += to_add
|
381 |
+
return codes.strip(" ")
|
382 |
+
|
383 |
+
model.eval()
|
384 |
+
|
385 |
+
correct = 0.0
|
386 |
+
total = 0
|
387 |
+
|
388 |
+
total_pred = []
|
389 |
+
total_gt = []
|
390 |
+
|
391 |
+
for step, batch in enumerate(eval_dataloader):
|
392 |
+
inputs = batch.to(args.device)
|
393 |
+
|
394 |
+
with torch.no_grad():
|
395 |
+
outputs = model(inputs)
|
396 |
+
pred_scores = outputs[0]
|
397 |
+
pred_ids = pred_scores.argmax(-1)
|
398 |
+
|
399 |
+
all_pred = []
|
400 |
+
all_gt = []
|
401 |
+
prev_pred = None
|
402 |
+
for pred, gt in zip(pred_ids, inputs):
|
403 |
+
pred = pred.cpu().tolist()
|
404 |
+
gt = gt.cpu().tolist()
|
405 |
+
|
406 |
+
for i, y in enumerate(gt):
|
407 |
+
if i == 0:
|
408 |
+
if y in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]:
|
409 |
+
now_gt = [y]
|
410 |
+
now_pred = [0] if prev_pred is None else [prev_pred]
|
411 |
+
all_pred.append(DecodeIds(now_pred).strip().split()[0])
|
412 |
+
all_gt.append(DecodeIds(now_gt).strip())
|
413 |
+
now_gt = []
|
414 |
+
now_pred = []
|
415 |
+
else:
|
416 |
+
now_gt = [y]
|
417 |
+
now_pred = [0] if prev_pred is None else [prev_pred]
|
418 |
+
else:
|
419 |
+
if tokenizer.convert_ids_to_tokens(y)[0] == '\u0120':
|
420 |
+
if len(now_gt) > 0:
|
421 |
+
try:
|
422 |
+
all_pred.append(DecodeIds(now_pred).strip().split()[0])
|
423 |
+
except IndexError:
|
424 |
+
all_pred.append("<SPACE>")
|
425 |
+
all_gt.append(DecodeIds(now_gt).strip())
|
426 |
+
now_gt = []
|
427 |
+
now_pred = []
|
428 |
+
if y in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id] or tokenizer.convert_ids_to_tokens(y).startswith("<NUM_LIT"):
|
429 |
+
if len(now_gt) > 0:
|
430 |
+
try:
|
431 |
+
all_pred.append(DecodeIds(now_pred).strip().split()[0])
|
432 |
+
except IndexError:
|
433 |
+
all_pred.append("<SPACE>")
|
434 |
+
all_gt.append(DecodeIds(now_gt).strip())
|
435 |
+
now_gt = [y]
|
436 |
+
now_pred = [pred[i-1]]
|
437 |
+
try:
|
438 |
+
all_pred.append(DecodeIds(now_pred).strip().split()[0])
|
439 |
+
except IndexError:
|
440 |
+
all_pred.append("<SPACE>")
|
441 |
+
all_gt.append(DecodeIds(now_gt).strip())
|
442 |
+
now_gt = []
|
443 |
+
now_pred = []
|
444 |
+
continue
|
445 |
+
now_gt.append(y)
|
446 |
+
now_pred.append(pred[i-1])
|
447 |
+
assert len(all_pred) == len(all_gt)
|
448 |
+
|
449 |
+
total_pred.extend(all_pred)
|
450 |
+
total_gt.extend(all_gt)
|
451 |
+
|
452 |
+
|
453 |
+
for x, y in zip(all_pred, all_gt):
|
454 |
+
if y not in ["<s>", "</s>", "<EOL>", "<pad>"]:
|
455 |
+
total += 1
|
456 |
+
if x == y:
|
457 |
+
correct += 1
|
458 |
+
|
459 |
+
if step % args.logging_steps == 0:
|
460 |
+
logger.info(f"{step} are done!")
|
461 |
+
logger.info(f"{total}, {correct/total}")
|
462 |
+
|
463 |
+
# pickle.dump(total_pred, open(os.path.join(args.output_dir, "preds.pkl"), "wb"))
|
464 |
+
# pickle.dump(total_gt, open(os.path.join(args.output_dir, "gts.pkl"), "wb"))
|
465 |
+
|
466 |
+
saved_file = os.path.join(args.output_dir, "predictions.txt")
|
467 |
+
total_samples = post_process(args, total_pred, total_gt, open(os.path.join(args.data_dir, f"{file_type}.txt")).readlines(), saved_file)
|
468 |
+
logger.info(f"Eval on {total_samples}, saved at {saved_file}")
|
469 |
+
|
470 |
+
return total, correct
|
471 |
+
|
472 |
+
def post_process(args, preds, gts, true_gts, saved_file):
|
473 |
+
wf = open(saved_file, "w")
|
474 |
+
|
475 |
+
cnt = 0
|
476 |
+
new_gt = []
|
477 |
+
new_pred = []
|
478 |
+
for i, (pred,gt) in enumerate(zip(preds,gts)):
|
479 |
+
if gt in ["", "<pad>"]:
|
480 |
+
continue
|
481 |
+
new_gt.append(gt)
|
482 |
+
new_pred.append(pred.replace(" ", ""))
|
483 |
+
if gt == "</s>":
|
484 |
+
gt_str = " ".join(new_gt)
|
485 |
+
pred_str = " ".join(new_pred)
|
486 |
+
assert gt_str == true_gts[cnt].strip(), f"{cnt} sample gt_str != true_gt"
|
487 |
+
wf.write(pred_str+"\n")
|
488 |
+
cnt += 1
|
489 |
+
new_gt = []
|
490 |
+
new_pred = []
|
491 |
+
|
492 |
+
return cnt
|
493 |
+
|
494 |
+
|
495 |
+
def main():
|
496 |
+
parser = argparse.ArgumentParser()
|
497 |
+
|
498 |
+
## Required parameters
|
499 |
+
parser.add_argument("--data_dir", default=None, type=str, required=True,
|
500 |
+
help="The input data path.")
|
501 |
+
parser.add_argument("--langs", default=None, type=str, required=True,
|
502 |
+
help="Languages to train, if all, train all languages in data_dir")
|
503 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
504 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
505 |
+
|
506 |
+
## Other parameters
|
507 |
+
parser.add_argument("--model_type", default="gpt2", type=str,
|
508 |
+
help="The model architecture to be fine-tuned.")
|
509 |
+
parser.add_argument("--pretrain_dir", default="", type=str,
|
510 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
511 |
+
parser.add_argument("--config_dir", type=str,
|
512 |
+
help="config name. Required when training from scratch")
|
513 |
+
parser.add_argument("--tokenizer_dir", type=str,
|
514 |
+
help="Pre-trained tokenizer dir. Required when training from scratch")
|
515 |
+
parser.add_argument("--lit_file", type=str,
|
516 |
+
help="literals json file")
|
517 |
+
parser.add_argument("--load_name", type=str, default="pretrained",
|
518 |
+
help="Load pretrained model name")
|
519 |
+
|
520 |
+
parser.add_argument("--mlm", action='store_true',
|
521 |
+
help="Train with masked-language modeling loss instead of language modeling.")
|
522 |
+
parser.add_argument("--mlm_probability", type=float, default=0.15,
|
523 |
+
help="Ratio of tokens to mask for masked language modeling loss")
|
524 |
+
|
525 |
+
parser.add_argument("--cache_dir", default="", type=str,
|
526 |
+
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
|
527 |
+
parser.add_argument("--block_size", default=1024, type=int,
|
528 |
+
help="Optional input sequence length after tokenization."
|
529 |
+
"The training dataset will be truncated in block of this size for training."
|
530 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens).")
|
531 |
+
parser.add_argument("--do_train", action='store_true',
|
532 |
+
help="Whether to run training.")
|
533 |
+
parser.add_argument("--do_eval", action='store_true',
|
534 |
+
help="Whether to run eval on the dev set.")
|
535 |
+
parser.add_argument("--evaluate_during_training", action='store_true',
|
536 |
+
help="Run evaluation during training at each logging step.")
|
537 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
538 |
+
help="Set this flag if you are using an uncased model.")
|
539 |
+
|
540 |
+
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
|
541 |
+
help="Batch size per GPU/CPU for training.")
|
542 |
+
parser.add_argument("--per_gpu_eval_batch_size", default=12, type=int,
|
543 |
+
help="Batch size per GPU/CPU for evaluation.")
|
544 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
545 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
546 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
547 |
+
help="The initial learning rate for Adam.")
|
548 |
+
parser.add_argument("--weight_decay", default=0.0, type=float,
|
549 |
+
help="Weight deay if we apply some.")
|
550 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
551 |
+
help="Epsilon for Adam optimizer.")
|
552 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
553 |
+
help="Max gradient norm.")
|
554 |
+
parser.add_argument("--num_train_epochs", default=1.0, type=float,
|
555 |
+
help="Total number of training epochs to perform.")
|
556 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
557 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
558 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
559 |
+
help="Linear warmup over warmup_steps.")
|
560 |
+
|
561 |
+
parser.add_argument('--logging_steps', type=int, default=1000,
|
562 |
+
help="Log every X updates steps.")
|
563 |
+
parser.add_argument('--save_steps', type=int, default=5000,
|
564 |
+
help="Save checkpoint every X updates steps.")
|
565 |
+
parser.add_argument('--save_total_limit', type=int, default=None,
|
566 |
+
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
|
567 |
+
parser.add_argument("--eval_all_checkpoints", action='store_true',
|
568 |
+
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
|
569 |
+
parser.add_argument("--no_cuda", action='store_true',
|
570 |
+
help="Avoid using CUDA when available")
|
571 |
+
parser.add_argument('--overwrite_output_dir', action='store_true',
|
572 |
+
help="Overwrite the content of the output directory")
|
573 |
+
parser.add_argument('--overwrite_cache', action='store_true',
|
574 |
+
help="Overwrite the cached training and evaluation sets")
|
575 |
+
parser.add_argument('--seed', type=int, default=42,
|
576 |
+
help="random seed for initialization")
|
577 |
+
parser.add_argument('--not_pretrain', action='store_true',
|
578 |
+
help="use different dataset")
|
579 |
+
|
580 |
+
parser.add_argument('--fp16', action='store_true',
|
581 |
+
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
582 |
+
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
583 |
+
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
584 |
+
"See details at https://nvidia.github.io/apex/amp.html")
|
585 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
586 |
+
help="For distributed training: local_rank")
|
587 |
+
parser.add_argument("--node_index", type=int, default=-1,
|
588 |
+
help="node index if multi-node running")
|
589 |
+
parser.add_argument("--gpu_per_node", type=int, default=-1,
|
590 |
+
help="num of gpus per node")
|
591 |
+
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
|
592 |
+
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
|
593 |
+
|
594 |
+
parser.add_argument('--log_file', type=str, default='')
|
595 |
+
parser.add_argument('--tensorboard_dir', type=str)
|
596 |
+
|
597 |
+
pool = None
|
598 |
+
args = parser.parse_args()
|
599 |
+
|
600 |
+
# args.output_dir = os.path.join(args.output_dir, args.dataset)
|
601 |
+
|
602 |
+
if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm:
|
603 |
+
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
|
604 |
+
"flag (masked language modeling).")
|
605 |
+
|
606 |
+
if os.path.exists(args.output_dir) and os.listdir(
|
607 |
+
args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
608 |
+
raise ValueError(
|
609 |
+
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
610 |
+
args.output_dir))
|
611 |
+
|
612 |
+
# Setup distant debugging if needed
|
613 |
+
if args.server_ip and args.server_port:
|
614 |
+
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
615 |
+
import ptvsd
|
616 |
+
print("Waiting for debugger attach")
|
617 |
+
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
618 |
+
ptvsd.wait_for_attach()
|
619 |
+
|
620 |
+
logger.info("local_rank: %d, node_index: %d, gpu_per_node: %d"%(args.local_rank, args.node_index, args.gpu_per_node))
|
621 |
+
# Setup CUDA, GPU & distributed training
|
622 |
+
if args.local_rank == -1 or args.no_cuda:
|
623 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
624 |
+
args.n_gpu = torch.cuda.device_count()
|
625 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
626 |
+
torch.cuda.set_device(args.local_rank)
|
627 |
+
device = torch.device("cuda", args.local_rank)
|
628 |
+
torch.distributed.init_process_group(backend='nccl')
|
629 |
+
args.local_rank += args.node_index * args.gpu_per_node
|
630 |
+
args.n_gpu = 1
|
631 |
+
args.device = device
|
632 |
+
# args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
633 |
+
|
634 |
+
# Setup logging
|
635 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
636 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
637 |
+
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
638 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s, world size: %s",
|
639 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16,
|
640 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1)
|
641 |
+
|
642 |
+
# 使用FileHandler输出到文件
|
643 |
+
fh = logging.FileHandler(args.log_file)
|
644 |
+
logger.addHandler(fh)
|
645 |
+
|
646 |
+
# Set seed
|
647 |
+
set_seed(args)
|
648 |
+
|
649 |
+
# Load pretrained model and tokenizer
|
650 |
+
if args.local_rank not in [-1, 0]:
|
651 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
|
652 |
+
|
653 |
+
args.start_epoch = 0
|
654 |
+
args.start_step = 0
|
655 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
656 |
+
if args.do_train and os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
|
657 |
+
args.pretrain_dir = os.path.join(checkpoint_last)
|
658 |
+
args.config_name = os.path.join(checkpoint_last, 'config.json')
|
659 |
+
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
|
660 |
+
with open(idx_file, encoding='utf-8') as idxf:
|
661 |
+
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
|
662 |
+
|
663 |
+
step_file = os.path.join(checkpoint_last, 'step_file.txt')
|
664 |
+
if os.path.exists(step_file):
|
665 |
+
with open(step_file, encoding='utf-8') as stepf:
|
666 |
+
args.start_step = int(stepf.readlines()[0].strip())
|
667 |
+
|
668 |
+
logger.info("reload model from {}, resume from {} steps".format(checkpoint_last, args.start_step))
|
669 |
+
|
670 |
+
# get special tokens
|
671 |
+
special_tokens = get_special_tokens(args.lit_file)
|
672 |
+
|
673 |
+
# Load pre-trained model
|
674 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
675 |
+
pretrained = checkpoint_last #args.pretrain_dir
|
676 |
+
if pretrained:
|
677 |
+
tokenizer = tokenizer_class.from_pretrained(pretrained, do_lower_case=args.do_lower_case, sep_token='<EOL>', bos_token='<s>', eos_token='</s>', pad_token='<pad>', unk_token='<|UNKNOWN|>', additional_special_tokens=special_tokens)
|
678 |
+
if args.model_type == "rnn":
|
679 |
+
model = model_class(len(tokenizer), 768, 768, 1)
|
680 |
+
model_last = os.path.join(pretrained, 'model.pt')
|
681 |
+
if os.path.exists(model_last):
|
682 |
+
logger.warning(f"Loading model from {model_last}")
|
683 |
+
model.load_state_dict(torch.load(model_last, map_location="cpu"))
|
684 |
+
else:
|
685 |
+
model = model_class.from_pretrained(pretrained)
|
686 |
+
model.resize_token_embeddings(len(tokenizer))
|
687 |
+
else:
|
688 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_dir, sep_token='<EOL>', bos_token='<s>', eos_token='</s>', pad_token='<pad>', unk_token='<|UNKNOWN|>', additional_special_tokens=special_tokens)
|
689 |
+
args.vocab_size = len(tokenizer)
|
690 |
+
if args.model_type == "rnn":
|
691 |
+
model = model_class(len(tokenizer), 768, 768, 1)
|
692 |
+
else:
|
693 |
+
config = config_class.from_pretrained(args.config_dir)
|
694 |
+
model = model_class(config)
|
695 |
+
model.resize_token_embeddings(len(tokenizer))
|
696 |
+
|
697 |
+
|
698 |
+
model_parameters = model.parameters()
|
699 |
+
num_params = sum([np.prod(p.size()) for p in model_parameters])
|
700 |
+
logger.info(f"Model has a total of {num_params} trainable parameters")
|
701 |
+
|
702 |
+
if args.local_rank == 0:
|
703 |
+
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
|
704 |
+
|
705 |
+
logger.info("Training/evaluation parameters %s", args)
|
706 |
+
|
707 |
+
# Training
|
708 |
+
if args.do_train:
|
709 |
+
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
|
710 |
+
|
711 |
+
global_step, tr_loss = train(args, train_dataset, model, tokenizer, fh, pool)
|
712 |
+
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
713 |
+
|
714 |
+
# Only works on single GPU
|
715 |
+
if args.do_eval:
|
716 |
+
checkpoint_prefix = 'epoch_5/subject_model.pth'
|
717 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
718 |
+
model.load_state_dict(torch.load(output_dir))
|
719 |
+
model.to(args.device)
|
720 |
+
# 不要用dev文件,否则会在EvalDataset的__init__中检测不通过,被exit
|
721 |
+
# dev_total, dev_cr = eval_acc(args, model, tokenizer, 'dev')
|
722 |
+
# logger.info(f"Dev total tokens: {dev_total}, accuracy: {dev_cr/dev_total}")
|
723 |
+
test_total, test_cr = eval_acc(args, model, tokenizer, 'test')
|
724 |
+
logger.info(f"Test total tokens: {test_total}, accuracy: {test_cr/test_total}")
|
725 |
+
|
726 |
+
|
727 |
+
if __name__ == "__main__":
|
728 |
+
main()
|
Code-Code/CodeCompletion-token/code/train.sh
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LANG=java # set python for py150
|
2 |
+
DATADIR=../dataset/javaCorpus/token_completion
|
3 |
+
LITFILE=../dataset/javaCorpus/literals.json
|
4 |
+
OUTPUTDIR=../model/javaCorpus
|
5 |
+
PRETRAINDIR=microsoft/CodeGPT-small-java # microsoft/CodeGPT-small-py for py150
|
6 |
+
LOGFILE=train_javaCorpus.log
|
7 |
+
PER_NODE_GPU=4 # modify YOUR_GPU_NUM
|
8 |
+
|
9 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 python run_lm.py \
|
10 |
+
--data_dir=$DATADIR \
|
11 |
+
--lit_file=$LITFILE \
|
12 |
+
--langs=$LANG \
|
13 |
+
--output_dir=$OUTPUTDIR \
|
14 |
+
--pretrain_dir=$PRETRAINDIR \
|
15 |
+
--log_file=$LOGFILE \
|
16 |
+
--model_type=gpt2 \
|
17 |
+
--block_size=512 \
|
18 |
+
--do_train \
|
19 |
+
--gpu_per_node $PER_NODE_GPU \
|
20 |
+
--learning_rate=8e-5 \
|
21 |
+
--weight_decay=0.01 \
|
22 |
+
--evaluate_during_training \
|
23 |
+
--per_gpu_train_batch_size=1 \
|
24 |
+
--per_gpu_eval_batch_size=4 \
|
25 |
+
--gradient_accumulation_steps=4 \
|
26 |
+
--num_train_epochs=5 \
|
27 |
+
--logging_steps=100 \
|
28 |
+
--save_steps=1000 \
|
29 |
+
--seed=42 \
|
30 |
+
--overwrite_output_dir \
|
31 |
+
--not_pretrain
|
Code-Code/CodeCompletion-token/data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fe81ae13261569dcb0147143f6be01900bdea8fc19394b931a2f6be720dac03
|
3 |
+
size 16149700
|
Code-Code/Defect-detection/code/eval.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--tokenizer_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--do_eval \
|
7 |
+
--do_test \
|
8 |
+
--train_data_file=../dataset/train.jsonl \
|
9 |
+
--eval_data_file=../dataset/valid.jsonl \
|
10 |
+
--test_data_file=../dataset/valid.jsonl \
|
11 |
+
--epoch 5 \
|
12 |
+
--block_size 400 \
|
13 |
+
--train_batch_size 32 \
|
14 |
+
--eval_batch_size 64 \
|
15 |
+
--learning_rate 2e-5 \
|
16 |
+
--max_grad_norm 1.0 \
|
17 |
+
--evaluate_during_training \
|
18 |
+
--seed 123456
|
Code-Code/Defect-detection/code/evaluate.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python evaluator.py -a ../dataset/valid.jsonl -p ../model/predictions.txt
|
Code-Code/Defect-detection/code/evaluator.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
import json
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
def read_answers(filename):
|
9 |
+
answers={}
|
10 |
+
with open(filename) as f:
|
11 |
+
for line in f:
|
12 |
+
line=line.strip()
|
13 |
+
js=json.loads(line)
|
14 |
+
answers[js['idx']]=js['target']
|
15 |
+
return answers
|
16 |
+
|
17 |
+
def read_predictions(filename):
|
18 |
+
predictions={}
|
19 |
+
with open(filename) as f:
|
20 |
+
for line in f:
|
21 |
+
line=line.strip()
|
22 |
+
idx,label=line.split()
|
23 |
+
predictions[int(idx)]=int(label)
|
24 |
+
return predictions
|
25 |
+
|
26 |
+
def calculate_scores(answers,predictions):
|
27 |
+
Acc=[]
|
28 |
+
for key in answers:
|
29 |
+
if key not in predictions:
|
30 |
+
logging.error("Missing prediction for index {}.".format(key))
|
31 |
+
sys.exit()
|
32 |
+
Acc.append(answers[key]==predictions[key])
|
33 |
+
|
34 |
+
scores={}
|
35 |
+
scores['Acc']=np.mean(Acc)
|
36 |
+
return scores
|
37 |
+
|
38 |
+
def main():
|
39 |
+
import argparse
|
40 |
+
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for Defect Detection dataset.')
|
41 |
+
parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.")
|
42 |
+
parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.")
|
43 |
+
|
44 |
+
|
45 |
+
args = parser.parse_args()
|
46 |
+
answers=read_answers(args.answers)
|
47 |
+
predictions=read_predictions(args.predictions)
|
48 |
+
scores=calculate_scores(answers,predictions)
|
49 |
+
print(scores)
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
main()
|
Code-Code/Defect-detection/code/model.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch
|
6 |
+
from torch.autograd import Variable
|
7 |
+
import copy
|
8 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class Model(nn.Module):
|
13 |
+
def __init__(self, encoder,config,tokenizer,args):
|
14 |
+
super(Model, self).__init__()
|
15 |
+
self.encoder = encoder
|
16 |
+
self.config=config
|
17 |
+
self.tokenizer=tokenizer
|
18 |
+
self.args=args
|
19 |
+
|
20 |
+
# Define dropout layer, dropout_probability is taken from args.
|
21 |
+
self.dropout = nn.Dropout(args.dropout_probability)
|
22 |
+
|
23 |
+
|
24 |
+
def forward(self, input_ids=None,labels=None, return_vec=None):
|
25 |
+
outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1))
|
26 |
+
|
27 |
+
if return_vec:
|
28 |
+
return outputs.pooler_output
|
29 |
+
outputs = outputs[0]
|
30 |
+
|
31 |
+
# Apply dropout
|
32 |
+
outputs = self.dropout(outputs)
|
33 |
+
|
34 |
+
logits=outputs
|
35 |
+
prob=torch.sigmoid(logits)
|
36 |
+
if labels is not None:
|
37 |
+
labels=labels.float()
|
38 |
+
loss=torch.log(prob[:,0]+1e-10)*labels+torch.log((1-prob)[:,0]+1e-10)*(1-labels)
|
39 |
+
loss=-loss.mean()
|
40 |
+
return loss,prob
|
41 |
+
else:
|
42 |
+
return prob
|
43 |
+
|
44 |
+
|
45 |
+
|
Code-Code/Defect-detection/code/run.py
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
18 |
+
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
19 |
+
using a masked language modeling (MLM) loss.
|
20 |
+
"""
|
21 |
+
|
22 |
+
from __future__ import absolute_import, division, print_function
|
23 |
+
|
24 |
+
import argparse
|
25 |
+
import glob
|
26 |
+
import logging
|
27 |
+
import os
|
28 |
+
import pickle
|
29 |
+
import random
|
30 |
+
import re
|
31 |
+
import shutil
|
32 |
+
|
33 |
+
import numpy as np
|
34 |
+
import torch
|
35 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
36 |
+
from torch.utils.data.distributed import DistributedSampler
|
37 |
+
import json
|
38 |
+
try:
|
39 |
+
from torch.utils.tensorboard import SummaryWriter
|
40 |
+
except:
|
41 |
+
from tensorboardX import SummaryWriter
|
42 |
+
|
43 |
+
from tqdm import tqdm, trange
|
44 |
+
import multiprocessing
|
45 |
+
from model import Model
|
46 |
+
cpu_cont = multiprocessing.cpu_count()
|
47 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
48 |
+
BertConfig, BertForMaskedLM, BertTokenizer, BertForSequenceClassification,
|
49 |
+
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
|
50 |
+
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
|
51 |
+
RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer,
|
52 |
+
DistilBertConfig, DistilBertForMaskedLM, DistilBertForSequenceClassification, DistilBertTokenizer)
|
53 |
+
|
54 |
+
logger = logging.getLogger(__name__)
|
55 |
+
|
56 |
+
MODEL_CLASSES = {
|
57 |
+
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
|
58 |
+
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
|
59 |
+
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
|
60 |
+
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
|
61 |
+
'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
class InputFeatures(object):
|
67 |
+
"""A single training/test features for a example."""
|
68 |
+
def __init__(self,
|
69 |
+
input_tokens,
|
70 |
+
input_ids,
|
71 |
+
idx,
|
72 |
+
label,
|
73 |
+
|
74 |
+
):
|
75 |
+
self.input_tokens = input_tokens
|
76 |
+
self.input_ids = input_ids
|
77 |
+
self.idx=str(idx)
|
78 |
+
self.label=label
|
79 |
+
|
80 |
+
|
81 |
+
def convert_examples_to_features(js,tokenizer,args):
|
82 |
+
#source
|
83 |
+
code=' '.join(js['func'].split())
|
84 |
+
code_tokens=tokenizer.tokenize(code)[:args.block_size-2]
|
85 |
+
source_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]
|
86 |
+
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
|
87 |
+
padding_length = args.block_size - len(source_ids)
|
88 |
+
source_ids+=[tokenizer.pad_token_id]*padding_length
|
89 |
+
return InputFeatures(source_tokens,source_ids,js['idx'],js['target'])
|
90 |
+
|
91 |
+
class TextDataset(Dataset):
|
92 |
+
def __init__(self, tokenizer, args, file_path=None):
|
93 |
+
self.examples = []
|
94 |
+
with open(file_path) as f:
|
95 |
+
for line in f:
|
96 |
+
js=json.loads(line.strip())
|
97 |
+
self.examples.append(convert_examples_to_features(js,tokenizer,args))
|
98 |
+
if 'train' in file_path:
|
99 |
+
for idx, example in enumerate(self.examples[:3]):
|
100 |
+
logger.info("*** Example ***")
|
101 |
+
logger.info("idx: {}".format(idx))
|
102 |
+
logger.info("label: {}".format(example.label))
|
103 |
+
logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))
|
104 |
+
logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))
|
105 |
+
|
106 |
+
def __len__(self):
|
107 |
+
return len(self.examples)
|
108 |
+
|
109 |
+
def __getitem__(self, i):
|
110 |
+
return torch.tensor(self.examples[i].input_ids),torch.tensor(self.examples[i].label)
|
111 |
+
|
112 |
+
|
113 |
+
def set_seed(seed=42):
|
114 |
+
random.seed(seed)
|
115 |
+
os.environ['PYHTONHASHSEED'] = str(seed)
|
116 |
+
np.random.seed(seed)
|
117 |
+
torch.manual_seed(seed)
|
118 |
+
torch.cuda.manual_seed(seed)
|
119 |
+
torch.backends.cudnn.deterministic = True
|
120 |
+
|
121 |
+
|
122 |
+
def train(args, train_dataset, model, tokenizer):
|
123 |
+
""" Train the model """
|
124 |
+
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
125 |
+
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
126 |
+
|
127 |
+
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
|
128 |
+
batch_size=args.train_batch_size,num_workers=4,pin_memory=True)
|
129 |
+
args.max_steps=args.epoch*len( train_dataloader)
|
130 |
+
args.save_steps=len( train_dataloader)
|
131 |
+
args.warmup_steps=len( train_dataloader)
|
132 |
+
args.logging_steps=len( train_dataloader)
|
133 |
+
args.num_train_epochs=args.epoch
|
134 |
+
model.to(args.device)
|
135 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
136 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
137 |
+
optimizer_grouped_parameters = [
|
138 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
139 |
+
'weight_decay': args.weight_decay},
|
140 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
141 |
+
]
|
142 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
143 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,
|
144 |
+
num_training_steps=args.max_steps)
|
145 |
+
if args.fp16:
|
146 |
+
try:
|
147 |
+
from apex import amp
|
148 |
+
except ImportError:
|
149 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
150 |
+
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
151 |
+
|
152 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
153 |
+
if args.n_gpu > 1:
|
154 |
+
model = torch.nn.DataParallel(model)
|
155 |
+
|
156 |
+
# Distributed training (should be after apex fp16 initialization)
|
157 |
+
if args.local_rank != -1:
|
158 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
159 |
+
output_device=args.local_rank,
|
160 |
+
find_unused_parameters=True)
|
161 |
+
|
162 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
163 |
+
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
|
164 |
+
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
|
165 |
+
if os.path.exists(scheduler_last):
|
166 |
+
scheduler.load_state_dict(torch.load(scheduler_last))
|
167 |
+
if os.path.exists(optimizer_last):
|
168 |
+
optimizer.load_state_dict(torch.load(optimizer_last))
|
169 |
+
# Train!
|
170 |
+
logger.info("***** Running training *****")
|
171 |
+
logger.info(" Num examples = %d", len(train_dataset))
|
172 |
+
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
173 |
+
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
174 |
+
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
175 |
+
args.train_batch_size * args.gradient_accumulation_steps * (
|
176 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
177 |
+
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
178 |
+
logger.info(" Total optimization steps = %d", args.max_steps)
|
179 |
+
|
180 |
+
global_step = args.start_step
|
181 |
+
tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
|
182 |
+
best_mrr=0.0
|
183 |
+
best_acc=0.0
|
184 |
+
# model.resize_token_embeddings(len(tokenizer))
|
185 |
+
model.zero_grad()
|
186 |
+
|
187 |
+
# Initialize early stopping parameters at the start of training
|
188 |
+
early_stopping_counter = 0
|
189 |
+
best_loss = None
|
190 |
+
|
191 |
+
for idx in range(args.start_epoch, int(args.num_train_epochs)):
|
192 |
+
bar = tqdm(train_dataloader,total=len(train_dataloader))
|
193 |
+
tr_num=0
|
194 |
+
train_loss=0
|
195 |
+
for step, batch in enumerate(bar):
|
196 |
+
inputs = batch[0].to(args.device)
|
197 |
+
labels=batch[1].to(args.device)
|
198 |
+
model.train()
|
199 |
+
loss,logits = model(inputs,labels)
|
200 |
+
|
201 |
+
|
202 |
+
if args.n_gpu > 1:
|
203 |
+
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
204 |
+
if args.gradient_accumulation_steps > 1:
|
205 |
+
loss = loss / args.gradient_accumulation_steps
|
206 |
+
|
207 |
+
if args.fp16:
|
208 |
+
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
209 |
+
scaled_loss.backward()
|
210 |
+
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
211 |
+
else:
|
212 |
+
loss.backward()
|
213 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
214 |
+
|
215 |
+
tr_loss += loss.item()
|
216 |
+
tr_num+=1
|
217 |
+
train_loss+=loss.item()
|
218 |
+
if avg_loss==0:
|
219 |
+
avg_loss=tr_loss
|
220 |
+
avg_loss=round(train_loss/tr_num,5)
|
221 |
+
bar.set_description("epoch {} loss {}".format(idx,avg_loss))
|
222 |
+
|
223 |
+
|
224 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
225 |
+
optimizer.step()
|
226 |
+
optimizer.zero_grad()
|
227 |
+
scheduler.step()
|
228 |
+
global_step += 1
|
229 |
+
output_flag=True
|
230 |
+
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
|
231 |
+
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
232 |
+
logging_loss = tr_loss
|
233 |
+
tr_nb=global_step
|
234 |
+
|
235 |
+
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
236 |
+
|
237 |
+
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
|
238 |
+
results = evaluate(args, model, tokenizer,eval_when_training=True)
|
239 |
+
for key, value in results.items():
|
240 |
+
logger.info(" %s = %s", key, round(value,4))
|
241 |
+
# Save model checkpoint
|
242 |
+
|
243 |
+
if results['eval_acc']>best_acc:
|
244 |
+
best_acc=results['eval_acc']
|
245 |
+
logger.info(" "+"*"*20)
|
246 |
+
logger.info(" Best acc:%s",round(best_acc,4))
|
247 |
+
logger.info(" "+"*"*20)
|
248 |
+
|
249 |
+
checkpoint_prefix = 'checkpoint-best-acc'
|
250 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
251 |
+
if not os.path.exists(output_dir):
|
252 |
+
os.makedirs(output_dir)
|
253 |
+
model_to_save = model.module if hasattr(model,'module') else model
|
254 |
+
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
|
255 |
+
torch.save(model_to_save.state_dict(), output_dir)
|
256 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
257 |
+
|
258 |
+
# 每一轮记录checkpoint
|
259 |
+
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
|
260 |
+
if not os.path.exists(output_dir):
|
261 |
+
os.makedirs(output_dir)
|
262 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
263 |
+
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
|
264 |
+
logger.info("Saving model checkpoint to %s", ckpt_output_path)
|
265 |
+
torch.save(model_to_save.state_dict(), ckpt_output_path)
|
266 |
+
|
267 |
+
# Calculate average loss for the epoch
|
268 |
+
avg_loss = train_loss / tr_num
|
269 |
+
|
270 |
+
# Check for early stopping condition
|
271 |
+
if args.early_stopping_patience is not None:
|
272 |
+
if best_loss is None or avg_loss < best_loss - args.min_loss_delta:
|
273 |
+
best_loss = avg_loss
|
274 |
+
early_stopping_counter = 0
|
275 |
+
else:
|
276 |
+
early_stopping_counter += 1
|
277 |
+
if early_stopping_counter >= args.early_stopping_patience:
|
278 |
+
logger.info("Early stopping")
|
279 |
+
break # Exit the loop early
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
def evaluate(args, model, tokenizer,eval_when_training=False):
|
285 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
286 |
+
eval_output_dir = args.output_dir
|
287 |
+
|
288 |
+
eval_dataset = TextDataset(tokenizer, args,args.eval_data_file)
|
289 |
+
|
290 |
+
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
291 |
+
os.makedirs(eval_output_dir)
|
292 |
+
|
293 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
294 |
+
# Note that DistributedSampler samples randomly
|
295 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
296 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
|
297 |
+
|
298 |
+
# multi-gpu evaluate
|
299 |
+
if args.n_gpu > 1 and eval_when_training is False:
|
300 |
+
model = torch.nn.DataParallel(model)
|
301 |
+
|
302 |
+
# Eval!
|
303 |
+
logger.info("***** Running evaluation *****")
|
304 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
305 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
306 |
+
eval_loss = 0.0
|
307 |
+
nb_eval_steps = 0
|
308 |
+
model.eval()
|
309 |
+
logits=[]
|
310 |
+
labels=[]
|
311 |
+
for batch in eval_dataloader:
|
312 |
+
inputs = batch[0].to(args.device)
|
313 |
+
label=batch[1].to(args.device)
|
314 |
+
with torch.no_grad():
|
315 |
+
lm_loss,logit = model(inputs,label)
|
316 |
+
eval_loss += lm_loss.mean().item()
|
317 |
+
logits.append(logit.cpu().numpy())
|
318 |
+
labels.append(label.cpu().numpy())
|
319 |
+
nb_eval_steps += 1
|
320 |
+
logits=np.concatenate(logits,0)
|
321 |
+
labels=np.concatenate(labels,0)
|
322 |
+
preds=logits[:,0]>0.5
|
323 |
+
eval_acc=np.mean(labels==preds)
|
324 |
+
eval_loss = eval_loss / nb_eval_steps
|
325 |
+
perplexity = torch.tensor(eval_loss)
|
326 |
+
|
327 |
+
result = {
|
328 |
+
"eval_loss": float(perplexity),
|
329 |
+
"eval_acc":round(eval_acc,4),
|
330 |
+
}
|
331 |
+
return result
|
332 |
+
|
333 |
+
def test(args, model, tokenizer):
|
334 |
+
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
335 |
+
eval_dataset = TextDataset(tokenizer, args,args.test_data_file)
|
336 |
+
|
337 |
+
|
338 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
339 |
+
# Note that DistributedSampler samples randomly
|
340 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
341 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
342 |
+
|
343 |
+
# multi-gpu evaluate
|
344 |
+
if args.n_gpu > 1:
|
345 |
+
model = torch.nn.DataParallel(model)
|
346 |
+
|
347 |
+
# Eval!
|
348 |
+
logger.info("***** Running Test *****")
|
349 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
350 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
351 |
+
eval_loss = 0.0
|
352 |
+
nb_eval_steps = 0
|
353 |
+
model.eval()
|
354 |
+
logits=[]
|
355 |
+
labels=[]
|
356 |
+
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
|
357 |
+
inputs = batch[0].to(args.device)
|
358 |
+
label=batch[1].to(args.device)
|
359 |
+
with torch.no_grad():
|
360 |
+
logit = model(inputs)
|
361 |
+
logits.append(logit.cpu().numpy())
|
362 |
+
labels.append(label.cpu().numpy())
|
363 |
+
|
364 |
+
logits=np.concatenate(logits,0)
|
365 |
+
labels=np.concatenate(labels,0)
|
366 |
+
preds=logits[:,0]>0.5
|
367 |
+
with open(os.path.join(args.output_dir,"predictions.txt"),'w') as f:
|
368 |
+
for example,pred in zip(eval_dataset.examples,preds):
|
369 |
+
if pred:
|
370 |
+
f.write(example.idx+'\t1\n')
|
371 |
+
else:
|
372 |
+
f.write(example.idx+'\t0\n')
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
def main():
|
377 |
+
parser = argparse.ArgumentParser()
|
378 |
+
|
379 |
+
## Required parameters
|
380 |
+
parser.add_argument("--train_data_file", default=None, type=str, required=True,
|
381 |
+
help="The input training data file (a text file).")
|
382 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
383 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
384 |
+
|
385 |
+
## Other parameters
|
386 |
+
parser.add_argument("--eval_data_file", default=None, type=str,
|
387 |
+
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
|
388 |
+
parser.add_argument("--test_data_file", default=None, type=str,
|
389 |
+
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
|
390 |
+
|
391 |
+
parser.add_argument("--model_type", default="bert", type=str,
|
392 |
+
help="The model architecture to be fine-tuned.")
|
393 |
+
parser.add_argument("--model_name_or_path", default=None, type=str,
|
394 |
+
help="The model checkpoint for weights initialization.")
|
395 |
+
|
396 |
+
parser.add_argument("--mlm", action='store_true',
|
397 |
+
help="Train with masked-language modeling loss instead of language modeling.")
|
398 |
+
parser.add_argument("--mlm_probability", type=float, default=0.15,
|
399 |
+
help="Ratio of tokens to mask for masked language modeling loss")
|
400 |
+
|
401 |
+
parser.add_argument("--config_name", default="", type=str,
|
402 |
+
help="Optional pretrained config name or path if not the same as model_name_or_path")
|
403 |
+
parser.add_argument("--tokenizer_name", default="", type=str,
|
404 |
+
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
|
405 |
+
parser.add_argument("--cache_dir", default="", type=str,
|
406 |
+
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
|
407 |
+
parser.add_argument("--block_size", default=-1, type=int,
|
408 |
+
help="Optional input sequence length after tokenization."
|
409 |
+
"The training dataset will be truncated in block of this size for training."
|
410 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens).")
|
411 |
+
parser.add_argument("--do_train", action='store_true',
|
412 |
+
help="Whether to run training.")
|
413 |
+
parser.add_argument("--do_eval", action='store_true',
|
414 |
+
help="Whether to run eval on the dev set.")
|
415 |
+
parser.add_argument("--do_test", action='store_true',
|
416 |
+
help="Whether to run eval on the dev set.")
|
417 |
+
parser.add_argument("--evaluate_during_training", action='store_true',
|
418 |
+
help="Run evaluation during training at each logging step.")
|
419 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
420 |
+
help="Set this flag if you are using an uncased model.")
|
421 |
+
|
422 |
+
parser.add_argument("--train_batch_size", default=4, type=int,
|
423 |
+
help="Batch size per GPU/CPU for training.")
|
424 |
+
parser.add_argument("--eval_batch_size", default=4, type=int,
|
425 |
+
help="Batch size per GPU/CPU for evaluation.")
|
426 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
427 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
428 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
429 |
+
help="The initial learning rate for Adam.")
|
430 |
+
parser.add_argument("--weight_decay", default=0.0, type=float,
|
431 |
+
help="Weight deay if we apply some.")
|
432 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
433 |
+
help="Epsilon for Adam optimizer.")
|
434 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
435 |
+
help="Max gradient norm.")
|
436 |
+
parser.add_argument("--num_train_epochs", default=1.0, type=float,
|
437 |
+
help="Total number of training epochs to perform.")
|
438 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
439 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
440 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
441 |
+
help="Linear warmup over warmup_steps.")
|
442 |
+
|
443 |
+
parser.add_argument('--logging_steps', type=int, default=50,
|
444 |
+
help="Log every X updates steps.")
|
445 |
+
parser.add_argument('--save_steps', type=int, default=50,
|
446 |
+
help="Save checkpoint every X updates steps.")
|
447 |
+
parser.add_argument('--save_total_limit', type=int, default=None,
|
448 |
+
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
|
449 |
+
parser.add_argument("--eval_all_checkpoints", action='store_true',
|
450 |
+
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
|
451 |
+
parser.add_argument("--no_cuda", action='store_true',
|
452 |
+
help="Avoid using CUDA when available")
|
453 |
+
parser.add_argument('--overwrite_output_dir', action='store_true',
|
454 |
+
help="Overwrite the content of the output directory")
|
455 |
+
parser.add_argument('--overwrite_cache', action='store_true',
|
456 |
+
help="Overwrite the cached training and evaluation sets")
|
457 |
+
parser.add_argument('--seed', type=int, default=42,
|
458 |
+
help="random seed for initialization")
|
459 |
+
parser.add_argument('--epoch', type=int, default=42,
|
460 |
+
help="random seed for initialization")
|
461 |
+
parser.add_argument('--fp16', action='store_true',
|
462 |
+
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
463 |
+
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
464 |
+
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
465 |
+
"See details at https://nvidia.github.io/apex/amp.html")
|
466 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
467 |
+
help="For distributed training: local_rank")
|
468 |
+
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
|
469 |
+
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
|
470 |
+
|
471 |
+
# Add early stopping parameters and dropout probability parameters
|
472 |
+
parser.add_argument("--early_stopping_patience", type=int, default=None,
|
473 |
+
help="Number of epochs with no improvement after which training will be stopped.")
|
474 |
+
parser.add_argument("--min_loss_delta", type=float, default=0.001,
|
475 |
+
help="Minimum change in the loss required to qualify as an improvement.")
|
476 |
+
parser.add_argument('--dropout_probability', type=float, default=0, help='dropout probability')
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
args = parser.parse_args()
|
482 |
+
|
483 |
+
# Setup distant debugging if needed
|
484 |
+
if args.server_ip and args.server_port:
|
485 |
+
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
486 |
+
import ptvsd
|
487 |
+
print("Waiting for debugger attach")
|
488 |
+
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
489 |
+
ptvsd.wait_for_attach()
|
490 |
+
|
491 |
+
# Setup CUDA, GPU & distributed training
|
492 |
+
if args.local_rank == -1 or args.no_cuda:
|
493 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
494 |
+
args.n_gpu = torch.cuda.device_count()
|
495 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
496 |
+
torch.cuda.set_device(args.local_rank)
|
497 |
+
device = torch.device("cuda", args.local_rank)
|
498 |
+
torch.distributed.init_process_group(backend='nccl')
|
499 |
+
args.n_gpu = 1
|
500 |
+
args.device = device
|
501 |
+
args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
|
502 |
+
args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
|
503 |
+
# Setup logging
|
504 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
505 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
506 |
+
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
507 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
508 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
# Set seed
|
513 |
+
set_seed(args.seed)
|
514 |
+
|
515 |
+
# Load pretrained model and tokenizer
|
516 |
+
if args.local_rank not in [-1, 0]:
|
517 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
|
518 |
+
|
519 |
+
args.start_epoch = 0
|
520 |
+
args.start_step = 0
|
521 |
+
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
|
522 |
+
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
|
523 |
+
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
|
524 |
+
args.config_name = os.path.join(checkpoint_last, 'config.json')
|
525 |
+
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
|
526 |
+
with open(idx_file, encoding='utf-8') as idxf:
|
527 |
+
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
|
528 |
+
|
529 |
+
step_file = os.path.join(checkpoint_last, 'step_file.txt')
|
530 |
+
if os.path.exists(step_file):
|
531 |
+
with open(step_file, encoding='utf-8') as stepf:
|
532 |
+
args.start_step = int(stepf.readlines()[0].strip())
|
533 |
+
|
534 |
+
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
|
535 |
+
|
536 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
537 |
+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
|
538 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
539 |
+
config.num_labels=1
|
540 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,
|
541 |
+
do_lower_case=args.do_lower_case,
|
542 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
543 |
+
if args.block_size <= 0:
|
544 |
+
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
|
545 |
+
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
|
546 |
+
if args.model_name_or_path:
|
547 |
+
model = model_class.from_pretrained(args.model_name_or_path,
|
548 |
+
from_tf=bool('.ckpt' in args.model_name_or_path),
|
549 |
+
config=config,
|
550 |
+
cache_dir=args.cache_dir if args.cache_dir else None)
|
551 |
+
else:
|
552 |
+
model = model_class(config)
|
553 |
+
|
554 |
+
model=Model(model,config,tokenizer,args)
|
555 |
+
if args.local_rank == 0:
|
556 |
+
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
|
557 |
+
|
558 |
+
logger.info("Training/evaluation parameters %s", args)
|
559 |
+
|
560 |
+
# Training
|
561 |
+
if args.do_train:
|
562 |
+
if args.local_rank not in [-1, 0]:
|
563 |
+
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
|
564 |
+
|
565 |
+
train_dataset = TextDataset(tokenizer, args,args.train_data_file)
|
566 |
+
if args.local_rank == 0:
|
567 |
+
torch.distributed.barrier()
|
568 |
+
|
569 |
+
train(args, train_dataset, model, tokenizer)
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
# Evaluation
|
574 |
+
results = {}
|
575 |
+
if args.do_eval and args.local_rank in [-1, 0]:
|
576 |
+
checkpoint_prefix = 'epoch_5/subject_model.pth'
|
577 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
578 |
+
model.load_state_dict(torch.load(output_dir))
|
579 |
+
model.to(args.device)
|
580 |
+
result=evaluate(args, model, tokenizer)
|
581 |
+
logger.info("***** Eval results *****")
|
582 |
+
for key in sorted(result.keys()):
|
583 |
+
logger.info(" %s = %s", key, str(round(result[key],4)))
|
584 |
+
|
585 |
+
if args.do_test and args.local_rank in [-1, 0]:
|
586 |
+
checkpoint_prefix = 'epoch_5/subject_model.pth'
|
587 |
+
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
|
588 |
+
model.load_state_dict(torch.load(output_dir))
|
589 |
+
model.to(args.device)
|
590 |
+
test(args, model, tokenizer)
|
591 |
+
|
592 |
+
return results
|
593 |
+
|
594 |
+
|
595 |
+
if __name__ == "__main__":
|
596 |
+
main()
|
597 |
+
|
598 |
+
|
Code-Code/Defect-detection/code/train.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0,1 python run.py \
|
2 |
+
--output_dir=../model \
|
3 |
+
--model_type=roberta \
|
4 |
+
--tokenizer_name=microsoft/codebert-base \
|
5 |
+
--model_name_or_path=microsoft/codebert-base \
|
6 |
+
--do_train \
|
7 |
+
--train_data_file=../dataset/train.jsonl \
|
8 |
+
--eval_data_file=../dataset/valid.jsonl \
|
9 |
+
--test_data_file=../dataset/test.jsonl \
|
10 |
+
--epoch 5 \
|
11 |
+
--block_size 400 \
|
12 |
+
--train_batch_size 32 \
|
13 |
+
--eval_batch_size 64 \
|
14 |
+
--learning_rate 2e-5 \
|
15 |
+
--max_grad_norm 1.0 \
|
16 |
+
--evaluate_during_training \
|
17 |
+
--seed 123456
|
Code-Code/Defect-detection/dataset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fafb4004eda1a4e1d4392b002e3de6f542d2a2b6701ec9758f25791bc9da49d6
|
3 |
+
size 14533467
|
Code-Code/code-refinement/code/bleu.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 Google Inc. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
|
16 |
+
"""Python implementation of BLEU and smooth-BLEU.
|
17 |
+
|
18 |
+
This module provides a Python implementation of BLEU and smooth-BLEU.
|
19 |
+
Smooth BLEU is computed following the method outlined in the paper:
|
20 |
+
Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic
|
21 |
+
evaluation metrics for machine translation. COLING 2004.
|
22 |
+
"""
|
23 |
+
|
24 |
+
import collections
|
25 |
+
import math
|
26 |
+
|
27 |
+
|
28 |
+
def _get_ngrams(segment, max_order):
|
29 |
+
"""Extracts all n-grams upto a given maximum order from an input segment.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
segment: text segment from which n-grams will be extracted.
|
33 |
+
max_order: maximum length in tokens of the n-grams returned by this
|
34 |
+
methods.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
The Counter containing all n-grams upto max_order in segment
|
38 |
+
with a count of how many times each n-gram occurred.
|
39 |
+
"""
|
40 |
+
ngram_counts = collections.Counter()
|
41 |
+
for order in range(1, max_order + 1):
|
42 |
+
for i in range(0, len(segment) - order + 1):
|
43 |
+
ngram = tuple(segment[i:i+order])
|
44 |
+
ngram_counts[ngram] += 1
|
45 |
+
return ngram_counts
|
46 |
+
|
47 |
+
|
48 |
+
def compute_bleu(reference_corpus, translation_corpus, max_order=4,
|
49 |
+
smooth=False):
|
50 |
+
"""Computes BLEU score of translated segments against one or more references.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
reference_corpus: list of lists of references for each translation. Each
|
54 |
+
reference should be tokenized into a list of tokens.
|
55 |
+
translation_corpus: list of translations to score. Each translation
|
56 |
+
should be tokenized into a list of tokens.
|
57 |
+
max_order: Maximum n-gram order to use when computing BLEU score.
|
58 |
+
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
|
62 |
+
precisions and brevity penalty.
|
63 |
+
"""
|
64 |
+
matches_by_order = [0] * max_order
|
65 |
+
possible_matches_by_order = [0] * max_order
|
66 |
+
reference_length = 0
|
67 |
+
translation_length = 0
|
68 |
+
for (references, translation) in zip(reference_corpus,
|
69 |
+
translation_corpus):
|
70 |
+
reference_length += min(len(r) for r in references)
|
71 |
+
translation_length += len(translation)
|
72 |
+
|
73 |
+
merged_ref_ngram_counts = collections.Counter()
|
74 |
+
for reference in references:
|
75 |
+
merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
|
76 |
+
translation_ngram_counts = _get_ngrams(translation, max_order)
|
77 |
+
overlap = translation_ngram_counts & merged_ref_ngram_counts
|
78 |
+
for ngram in overlap:
|
79 |
+
matches_by_order[len(ngram)-1] += overlap[ngram]
|
80 |
+
for order in range(1, max_order+1):
|
81 |
+
possible_matches = len(translation) - order + 1
|
82 |
+
if possible_matches > 0:
|
83 |
+
possible_matches_by_order[order-1] += possible_matches
|
84 |
+
|
85 |
+
precisions = [0] * max_order
|
86 |
+
for i in range(0, max_order):
|
87 |
+
if smooth:
|
88 |
+
precisions[i] = ((matches_by_order[i] + 1.) /
|
89 |
+
(possible_matches_by_order[i] + 1.))
|
90 |
+
else:
|
91 |
+
if possible_matches_by_order[i] > 0:
|
92 |
+
precisions[i] = (float(matches_by_order[i]) /
|
93 |
+
possible_matches_by_order[i])
|
94 |
+
else:
|
95 |
+
precisions[i] = 0.0
|
96 |
+
|
97 |
+
if min(precisions) > 0:
|
98 |
+
p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions)
|
99 |
+
geo_mean = math.exp(p_log_sum)
|
100 |
+
else:
|
101 |
+
geo_mean = 0
|
102 |
+
|
103 |
+
ratio = float(translation_length) / reference_length
|
104 |
+
|
105 |
+
if ratio > 1.0:
|
106 |
+
bp = 1.
|
107 |
+
else:
|
108 |
+
bp = math.exp(1 - 1. / ratio)
|
109 |
+
|
110 |
+
bleu = geo_mean * bp
|
111 |
+
|
112 |
+
return (bleu, precisions, bp, ratio, translation_length, reference_length)
|
113 |
+
|
114 |
+
|
115 |
+
def _bleu(ref_file, trans_file, subword_option=None):
|
116 |
+
max_order = 4
|
117 |
+
smooth = True
|
118 |
+
ref_files = [ref_file]
|
119 |
+
reference_text = []
|
120 |
+
for reference_filename in ref_files:
|
121 |
+
with open(reference_filename) as fh:
|
122 |
+
reference_text.append(fh.readlines())
|
123 |
+
per_segment_references = []
|
124 |
+
for references in zip(*reference_text):
|
125 |
+
reference_list = []
|
126 |
+
for reference in references:
|
127 |
+
reference_list.append(reference.strip().split())
|
128 |
+
per_segment_references.append(reference_list)
|
129 |
+
translations = []
|
130 |
+
with open(trans_file) as fh:
|
131 |
+
for line in fh:
|
132 |
+
translations.append(line.strip().split())
|
133 |
+
bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth)
|
134 |
+
return round(100 * bleu_score,2)
|
Code-Code/code-refinement/code/eval.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model=microsoft/codebert-base
|
2 |
+
output_dir=../model
|
3 |
+
data_size=small
|
4 |
+
|
5 |
+
CUDA_VISIBLE_DEVICES=1 python run.py \
|
6 |
+
--do_test \
|
7 |
+
--model_type roberta \
|
8 |
+
--model_name_or_path $pretrained_model \
|
9 |
+
--config_name roberta-base \
|
10 |
+
--tokenizer_name roberta-base \
|
11 |
+
--load_model_path $output_dir/epoch_34/subject_model.pth \
|
12 |
+
--dev_filename ../data/$data_size/valid.buggy-fixed.buggy,../data/$data_size/valid.buggy-fixed.fixed \
|
13 |
+
--output_dir $output_dir \
|
14 |
+
--max_source_length 256 \
|
15 |
+
--max_target_length 256 \
|
16 |
+
--beam_size 5 \
|
17 |
+
--eval_batch_size 16
|
Code-Code/code-refinement/code/evaluate.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
python evaluator.py \
|
2 |
+
-ref ../data/small/valid.buggy-fixed.fixed \
|
3 |
+
-pre ../model/test_0.output
|
Code-Code/code-refinement/code/evaluator.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
|
6 |
+
from bleu import _bleu
|
7 |
+
|
8 |
+
def main():
|
9 |
+
import argparse
|
10 |
+
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for BigCloneBench dataset.')
|
11 |
+
parser.add_argument('--references', '-ref',help="filename of the labels, in txt format.")
|
12 |
+
parser.add_argument('--predictions', '-pre',help="filename of the leaderboard predictions, in txt format.")
|
13 |
+
|
14 |
+
args = parser.parse_args()
|
15 |
+
|
16 |
+
refs = [x.strip() for x in open(args.references, 'r', encoding='utf-8').readlines()]
|
17 |
+
pres = [x.strip() for x in open(args.predictions, 'r', encoding='utf-8').readlines()]
|
18 |
+
|
19 |
+
assert len(refs) == len(pres)
|
20 |
+
|
21 |
+
length = len(refs)
|
22 |
+
count = 0
|
23 |
+
for i in range(length):
|
24 |
+
r = refs[i]
|
25 |
+
p = pres[i]
|
26 |
+
if r == p:
|
27 |
+
count += 1
|
28 |
+
acc = round(count/length*100, 2)
|
29 |
+
|
30 |
+
bleu_score = round(_bleu(args.references, args.predictions),2)
|
31 |
+
|
32 |
+
print('BLEU:', bleu_score, '; Acc:', acc)
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
main()
|
Code-Code/code-refinement/code/model.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch
|
7 |
+
from torch.autograd import Variable
|
8 |
+
import copy
|
9 |
+
class Seq2Seq(nn.Module):
|
10 |
+
"""
|
11 |
+
Build Seqence-to-Sequence.
|
12 |
+
|
13 |
+
Parameters:
|
14 |
+
|
15 |
+
* `encoder`- encoder of seq2seq model. e.g. roberta
|
16 |
+
* `decoder`- decoder of seq2seq model. e.g. transformer
|
17 |
+
* `config`- configuration of encoder model.
|
18 |
+
* `beam_size`- beam size for beam search.
|
19 |
+
* `max_length`- max length of target for beam search.
|
20 |
+
* `sos_id`- start of symbol ids in target for beam search.
|
21 |
+
* `eos_id`- end of symbol ids in target for beam search.
|
22 |
+
"""
|
23 |
+
def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None):
|
24 |
+
super(Seq2Seq, self).__init__()
|
25 |
+
self.encoder = encoder
|
26 |
+
self.decoder=decoder
|
27 |
+
self.config=config
|
28 |
+
self.register_buffer("bias", torch.tril(torch.ones(2048, 2048)))
|
29 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
30 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
31 |
+
self.lsm = nn.LogSoftmax(dim=-1)
|
32 |
+
self.tie_weights()
|
33 |
+
|
34 |
+
self.beam_size=beam_size
|
35 |
+
self.max_length=max_length
|
36 |
+
self.sos_id=sos_id
|
37 |
+
self.eos_id=eos_id
|
38 |
+
|
39 |
+
def _tie_or_clone_weights(self, first_module, second_module):
|
40 |
+
""" Tie or clone module weights depending of weither we are using TorchScript or not
|
41 |
+
"""
|
42 |
+
if self.config.torchscript:
|
43 |
+
first_module.weight = nn.Parameter(second_module.weight.clone())
|
44 |
+
else:
|
45 |
+
first_module.weight = second_module.weight
|
46 |
+
|
47 |
+
def tie_weights(self):
|
48 |
+
""" Make sure we are sharing the input and output embeddings.
|
49 |
+
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
50 |
+
"""
|
51 |
+
self._tie_or_clone_weights(self.lm_head,
|
52 |
+
self.encoder.embeddings.word_embeddings)
|
53 |
+
|
54 |
+
def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None, return_vec=None):
|
55 |
+
outputs = self.encoder(source_ids, attention_mask=source_mask)
|
56 |
+
if return_vec:
|
57 |
+
return outputs.pooler_output
|
58 |
+
|
59 |
+
encoder_output = outputs[0].permute([1,0,2]).contiguous()
|
60 |
+
|
61 |
+
if target_ids is not None:
|
62 |
+
attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]])
|
63 |
+
tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous()
|
64 |
+
out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool())
|
65 |
+
hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous()
|
66 |
+
lm_logits = self.lm_head(hidden_states)
|
67 |
+
# Shift so that tokens < n predict n
|
68 |
+
active_loss = target_mask[..., 1:].ne(0).view(-1) == 1
|
69 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
70 |
+
shift_labels = target_ids[..., 1:].contiguous()
|
71 |
+
# Flatten the tokens
|
72 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
|
73 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss],
|
74 |
+
shift_labels.view(-1)[active_loss])
|
75 |
+
|
76 |
+
outputs = loss,loss*active_loss.sum(),active_loss.sum()
|
77 |
+
return outputs
|
78 |
+
else:
|
79 |
+
#Predict
|
80 |
+
preds=[]
|
81 |
+
zero=torch.cuda.LongTensor(1).fill_(0)
|
82 |
+
for i in range(source_ids.shape[0]):
|
83 |
+
context=encoder_output[:,i:i+1]
|
84 |
+
context_mask=source_mask[i:i+1,:]
|
85 |
+
beam = Beam(self.beam_size,self.sos_id,self.eos_id)
|
86 |
+
input_ids=beam.getCurrentState()
|
87 |
+
context=context.repeat(1, self.beam_size,1)
|
88 |
+
context_mask=context_mask.repeat(self.beam_size,1)
|
89 |
+
for _ in range(self.max_length):
|
90 |
+
if beam.done():
|
91 |
+
break
|
92 |
+
attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]])
|
93 |
+
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous()
|
94 |
+
out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool())
|
95 |
+
out = torch.tanh(self.dense(out))
|
96 |
+
hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:]
|
97 |
+
out = self.lsm(self.lm_head(hidden_states)).data
|
98 |
+
beam.advance(out)
|
99 |
+
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
|
100 |
+
input_ids=torch.cat((input_ids,beam.getCurrentState()),-1)
|
101 |
+
hyp= beam.getHyp(beam.getFinal())
|
102 |
+
pred=beam.buildTargetTokens(hyp)[:self.beam_size]
|
103 |
+
pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred]
|
104 |
+
preds.append(torch.cat(pred,0).unsqueeze(0))
|
105 |
+
|
106 |
+
preds=torch.cat(preds,0)
|
107 |
+
return preds
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
class Beam(object):
|
112 |
+
def __init__(self, size,sos,eos):
|
113 |
+
self.size = size
|
114 |
+
self.tt = torch.cuda
|
115 |
+
# The score for each translation on the beam.
|
116 |
+
self.scores = self.tt.FloatTensor(size).zero_()
|
117 |
+
# The backpointers at each time-step.
|
118 |
+
self.prevKs = []
|
119 |
+
# The outputs at each time-step.
|
120 |
+
self.nextYs = [self.tt.LongTensor(size)
|
121 |
+
.fill_(0)]
|
122 |
+
self.nextYs[0][0] = sos
|
123 |
+
# Has EOS topped the beam yet.
|
124 |
+
self._eos = eos
|
125 |
+
self.eosTop = False
|
126 |
+
# Time and k pair for finished.
|
127 |
+
self.finished = []
|
128 |
+
|
129 |
+
def getCurrentState(self):
|
130 |
+
"Get the outputs for the current timestep."
|
131 |
+
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1)
|
132 |
+
return batch
|
133 |
+
|
134 |
+
def getCurrentOrigin(self):
|
135 |
+
"Get the backpointers for the current timestep."
|
136 |
+
return self.prevKs[-1]
|
137 |
+
|
138 |
+
def advance(self, wordLk):
|
139 |
+
"""
|
140 |
+
Given prob over words for every last beam `wordLk` and attention
|
141 |
+
`attnOut`: Compute and update the beam search.
|
142 |
+
|
143 |
+
Parameters:
|
144 |
+
|
145 |
+
* `wordLk`- probs of advancing from the last step (K x words)
|
146 |
+
* `attnOut`- attention at the last step
|
147 |
+
|
148 |
+
Returns: True if beam search is complete.
|
149 |
+
"""
|
150 |
+
numWords = wordLk.size(1)
|
151 |
+
|
152 |
+
# Sum the previous scores.
|
153 |
+
if len(self.prevKs) > 0:
|
154 |
+
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
|
155 |
+
|
156 |
+
# Don't let EOS have children.
|
157 |
+
for i in range(self.nextYs[-1].size(0)):
|
158 |
+
if self.nextYs[-1][i] == self._eos:
|
159 |
+
beamLk[i] = -1e20
|
160 |
+
else:
|
161 |
+
beamLk = wordLk[0]
|
162 |
+
flatBeamLk = beamLk.view(-1)
|
163 |
+
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
|
164 |
+
|
165 |
+
self.scores = bestScores
|
166 |
+
|
167 |
+
# bestScoresId is flattened beam x word array, so calculate which
|
168 |
+
# word and beam each score came from
|
169 |
+
prevK = bestScoresId // numWords
|
170 |
+
self.prevKs.append(prevK)
|
171 |
+
self.nextYs.append((bestScoresId - prevK * numWords))
|
172 |
+
|
173 |
+
|
174 |
+
for i in range(self.nextYs[-1].size(0)):
|
175 |
+
if self.nextYs[-1][i] == self._eos:
|
176 |
+
s = self.scores[i]
|
177 |
+
self.finished.append((s, len(self.nextYs) - 1, i))
|
178 |
+
|
179 |
+
# End condition is when top-of-beam is EOS and no global score.
|
180 |
+
if self.nextYs[-1][0] == self._eos:
|
181 |
+
self.eosTop = True
|
182 |
+
|
183 |
+
def done(self):
|
184 |
+
return self.eosTop and len(self.finished) >=self.size
|
185 |
+
|
186 |
+
def getFinal(self):
|
187 |
+
if len(self.finished) == 0:
|
188 |
+
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
|
189 |
+
self.finished.sort(key=lambda a: -a[0])
|
190 |
+
if len(self.finished) != self.size:
|
191 |
+
unfinished=[]
|
192 |
+
for i in range(self.nextYs[-1].size(0)):
|
193 |
+
if self.nextYs[-1][i] != self._eos:
|
194 |
+
s = self.scores[i]
|
195 |
+
unfinished.append((s, len(self.nextYs) - 1, i))
|
196 |
+
unfinished.sort(key=lambda a: -a[0])
|
197 |
+
self.finished+=unfinished[:self.size-len(self.finished)]
|
198 |
+
return self.finished[:self.size]
|
199 |
+
|
200 |
+
def getHyp(self, beam_res):
|
201 |
+
"""
|
202 |
+
Walk back to construct the full hypothesis.
|
203 |
+
"""
|
204 |
+
hyps=[]
|
205 |
+
for _,timestep, k in beam_res:
|
206 |
+
hyp = []
|
207 |
+
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
|
208 |
+
hyp.append(self.nextYs[j+1][k])
|
209 |
+
k = self.prevKs[j][k]
|
210 |
+
hyps.append(hyp[::-1])
|
211 |
+
return hyps
|
212 |
+
|
213 |
+
def buildTargetTokens(self, preds):
|
214 |
+
sentence=[]
|
215 |
+
for pred in preds:
|
216 |
+
tokens = []
|
217 |
+
for tok in pred:
|
218 |
+
if tok==self._eos:
|
219 |
+
break
|
220 |
+
tokens.append(tok)
|
221 |
+
sentence.append(tokens)
|
222 |
+
return sentence
|
223 |
+
|
Code-Code/code-refinement/code/run.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
18 |
+
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
19 |
+
using a masked language modeling (MLM) loss.
|
20 |
+
"""
|
21 |
+
|
22 |
+
from __future__ import absolute_import
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
import pickle
|
26 |
+
import torch
|
27 |
+
import json
|
28 |
+
import random
|
29 |
+
import logging
|
30 |
+
import argparse
|
31 |
+
import numpy as np
|
32 |
+
from io import open
|
33 |
+
from itertools import cycle
|
34 |
+
import torch.nn as nn
|
35 |
+
from model import Seq2Seq
|
36 |
+
from tqdm import tqdm, trange
|
37 |
+
from bleu import _bleu
|
38 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
39 |
+
from torch.utils.data.distributed import DistributedSampler
|
40 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
41 |
+
RobertaConfig, RobertaModel, RobertaTokenizer)
|
42 |
+
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}
|
43 |
+
|
44 |
+
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
45 |
+
datefmt = '%m/%d/%Y %H:%M:%S',
|
46 |
+
level = logging.INFO)
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
class Example(object):
|
50 |
+
"""A single training/test example."""
|
51 |
+
def __init__(self,
|
52 |
+
idx,
|
53 |
+
source,
|
54 |
+
target,
|
55 |
+
):
|
56 |
+
self.idx = idx
|
57 |
+
self.source = source
|
58 |
+
self.target = target
|
59 |
+
|
60 |
+
# def read_examples(filename):
|
61 |
+
# """Read examples from filename."""
|
62 |
+
# examples=[]
|
63 |
+
# with open(filename,encoding="utf-8") as f:
|
64 |
+
# for idx,js in enumerate(json.load(f)):
|
65 |
+
# source=' '.join(js['old_comment_tokens'])
|
66 |
+
# target=' '.join(js['new_comment_tokens'])
|
67 |
+
# examples.append(
|
68 |
+
# Example(
|
69 |
+
# idx = idx,
|
70 |
+
# source=source,
|
71 |
+
# target=target,
|
72 |
+
# )
|
73 |
+
# )
|
74 |
+
# return examples
|
75 |
+
def read_examples(filename):
|
76 |
+
"""Read examples from filename."""
|
77 |
+
examples=[]
|
78 |
+
assert len(filename.split(','))==2
|
79 |
+
src_filename = filename.split(',')[0]
|
80 |
+
trg_filename = filename.split(',')[1]
|
81 |
+
idx = 0
|
82 |
+
with open(src_filename) as f1,open(trg_filename) as f2:
|
83 |
+
for line1,line2 in zip(f1,f2):
|
84 |
+
examples.append(
|
85 |
+
Example(
|
86 |
+
idx = idx,
|
87 |
+
source=line1.strip(),
|
88 |
+
target=line2.strip(),
|
89 |
+
)
|
90 |
+
)
|
91 |
+
idx+=1
|
92 |
+
return examples
|
93 |
+
|
94 |
+
class InputFeatures(object):
|
95 |
+
"""A single training/test features for a example."""
|
96 |
+
def __init__(self,
|
97 |
+
example_id,
|
98 |
+
source_ids,
|
99 |
+
target_ids,
|
100 |
+
source_mask,
|
101 |
+
target_mask,
|
102 |
+
|
103 |
+
):
|
104 |
+
self.example_id = example_id
|
105 |
+
self.source_ids = source_ids
|
106 |
+
self.target_ids = target_ids
|
107 |
+
self.source_mask = source_mask
|
108 |
+
self.target_mask = target_mask
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
def convert_examples_to_features(examples, tokenizer, args,stage=None):
|
113 |
+
features = []
|
114 |
+
for example_index, example in enumerate(examples):
|
115 |
+
#source
|
116 |
+
source_tokens = tokenizer.tokenize(example.source)[:args.max_source_length-2]
|
117 |
+
source_tokens =[tokenizer.cls_token]+source_tokens+[tokenizer.sep_token]
|
118 |
+
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
|
119 |
+
source_mask = [1] * (len(source_tokens))
|
120 |
+
padding_length = args.max_source_length - len(source_ids)
|
121 |
+
source_ids+=[tokenizer.pad_token_id]*padding_length
|
122 |
+
source_mask+=[0]*padding_length
|
123 |
+
|
124 |
+
#target
|
125 |
+
if stage=="test":
|
126 |
+
target_tokens = tokenizer.tokenize("None")
|
127 |
+
else:
|
128 |
+
target_tokens = tokenizer.tokenize(example.target)[:args.max_target_length-2]
|
129 |
+
target_tokens = [tokenizer.cls_token]+target_tokens+[tokenizer.sep_token]
|
130 |
+
target_ids = tokenizer.convert_tokens_to_ids(target_tokens)
|
131 |
+
target_mask = [1] *len(target_ids)
|
132 |
+
padding_length = args.max_target_length - len(target_ids)
|
133 |
+
target_ids+=[tokenizer.pad_token_id]*padding_length
|
134 |
+
target_mask+=[0]*padding_length
|
135 |
+
|
136 |
+
if example_index < 5:
|
137 |
+
if stage=='train':
|
138 |
+
logger.info("*** Example ***")
|
139 |
+
logger.info("idx: {}".format(example.idx))
|
140 |
+
|
141 |
+
logger.info("source_tokens: {}".format([x.replace('\u0120','_') for x in source_tokens]))
|
142 |
+
logger.info("source_ids: {}".format(' '.join(map(str, source_ids))))
|
143 |
+
logger.info("source_mask: {}".format(' '.join(map(str, source_mask))))
|
144 |
+
|
145 |
+
logger.info("target_tokens: {}".format([x.replace('\u0120','_') for x in target_tokens]))
|
146 |
+
logger.info("target_ids: {}".format(' '.join(map(str, target_ids))))
|
147 |
+
logger.info("target_mask: {}".format(' '.join(map(str, target_mask))))
|
148 |
+
|
149 |
+
features.append(
|
150 |
+
InputFeatures(
|
151 |
+
example_index,
|
152 |
+
source_ids,
|
153 |
+
target_ids,
|
154 |
+
source_mask,
|
155 |
+
target_mask,
|
156 |
+
)
|
157 |
+
)
|
158 |
+
return features
|
159 |
+
|
160 |
+
|
161 |
+
def _truncate_seq_pair(tokens_a, tokens_b,tokens_c, max_length):
|
162 |
+
"""Truncates a sequence pair in place to the maximum length."""
|
163 |
+
|
164 |
+
# This is a simple heuristic which will always truncate the longer sequence
|
165 |
+
# one token at a time. This makes more sense than truncating an equal percent
|
166 |
+
# of tokens from each, since if one sequence is very short then each token
|
167 |
+
# that's truncated likely contains more information than a longer sequence.
|
168 |
+
|
169 |
+
while True:
|
170 |
+
total_length = len(tokens_a) + len(tokens_b)+len(tokens_c)
|
171 |
+
if total_length <= max_length:
|
172 |
+
break
|
173 |
+
if len(tokens_a) >= len(tokens_b) and len(tokens_a)>=len(tokens_c):
|
174 |
+
tokens_a.pop()
|
175 |
+
elif len(tokens_b) >= len(tokens_a) and len(tokens_b)>=len(tokens_c):
|
176 |
+
tokens_b.pop()
|
177 |
+
else:
|
178 |
+
tokens_c.pop()
|
179 |
+
|
180 |
+
def set_seed(args):
|
181 |
+
"""set random seed."""
|
182 |
+
random.seed(args.seed)
|
183 |
+
np.random.seed(args.seed)
|
184 |
+
torch.manual_seed(args.seed)
|
185 |
+
if args.n_gpu > 0:
|
186 |
+
torch.cuda.manual_seed_all(args.seed)
|
187 |
+
|
188 |
+
def main():
|
189 |
+
parser = argparse.ArgumentParser()
|
190 |
+
|
191 |
+
## Required parameters
|
192 |
+
parser.add_argument("--model_type", default=None, type=str, required=True,
|
193 |
+
help="Model type: e.g. roberta")
|
194 |
+
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
|
195 |
+
help="Path to pre-trained model: e.g. roberta-base" )
|
196 |
+
parser.add_argument("--tokenizer_name", default="", required=True,
|
197 |
+
help="Pretrained tokenizer name or path if not the same as model_name")
|
198 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
199 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
200 |
+
parser.add_argument("--load_model_path", default=None, type=str,
|
201 |
+
help="Path to trained model: Should contain the .bin files" )
|
202 |
+
## Other parameters
|
203 |
+
parser.add_argument("--train_filename", default=None, type=str,
|
204 |
+
help="The train filenames (source and target files).")
|
205 |
+
parser.add_argument("--dev_filename", default=None, type=str,
|
206 |
+
help="The dev filename. (source and target files).")
|
207 |
+
parser.add_argument("--test_filename", default=None, type=str,
|
208 |
+
help="The test filename. (source and target files).")
|
209 |
+
|
210 |
+
parser.add_argument("--config_name", default="", type=str,
|
211 |
+
help="Pretrained config name or path if not the same as model_name")
|
212 |
+
|
213 |
+
parser.add_argument("--max_source_length", default=64, type=int,
|
214 |
+
help="The maximum total source sequence length after tokenization. Sequences longer "
|
215 |
+
"than this will be truncated, sequences shorter will be padded.")
|
216 |
+
parser.add_argument("--max_target_length", default=32, type=int,
|
217 |
+
help="The maximum total target sequence length after tokenization. Sequences longer "
|
218 |
+
"than this will be truncated, sequences shorter will be padded.")
|
219 |
+
|
220 |
+
parser.add_argument("--do_train", action='store_true',
|
221 |
+
help="Whether to run training.")
|
222 |
+
parser.add_argument("--do_eval", action='store_true',
|
223 |
+
help="Whether to run eval on the dev set.")
|
224 |
+
parser.add_argument("--do_test", action='store_true',
|
225 |
+
help="Whether to run eval on the dev set.")
|
226 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
227 |
+
help="Set this flag if you are using an uncased model.")
|
228 |
+
parser.add_argument("--no_cuda", action='store_true',
|
229 |
+
help="Avoid using CUDA when available")
|
230 |
+
|
231 |
+
parser.add_argument("--train_batch_size", default=8, type=int,
|
232 |
+
help="Batch size per GPU/CPU for training.")
|
233 |
+
parser.add_argument("--eval_batch_size", default=8, type=int,
|
234 |
+
help="Batch size per GPU/CPU for evaluation.")
|
235 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
236 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
237 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
238 |
+
help="The initial learning rate for Adam.")
|
239 |
+
parser.add_argument("--beam_size", default=10, type=int,
|
240 |
+
help="beam size for beam search")
|
241 |
+
parser.add_argument("--weight_decay", default=0.0, type=float,
|
242 |
+
help="Weight deay if we apply some.")
|
243 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
244 |
+
help="Epsilon for Adam optimizer.")
|
245 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
246 |
+
help="Max gradient norm.")
|
247 |
+
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
248 |
+
help="Total number of training epochs to perform.")
|
249 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
250 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
251 |
+
parser.add_argument("--eval_steps", default=-1, type=int,
|
252 |
+
help="")
|
253 |
+
parser.add_argument("--train_steps", default=-1, type=int,
|
254 |
+
help="")
|
255 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
256 |
+
help="Linear warmup over warmup_steps.")
|
257 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
258 |
+
help="For distributed training: local_rank")
|
259 |
+
parser.add_argument('--seed', type=int, default=42,
|
260 |
+
help="random seed for initialization")
|
261 |
+
# print arguments
|
262 |
+
args = parser.parse_args()
|
263 |
+
logger.info(args)
|
264 |
+
|
265 |
+
# Setup CUDA, GPU & distributed training
|
266 |
+
if args.local_rank == -1 or args.no_cuda:
|
267 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
268 |
+
args.n_gpu = torch.cuda.device_count()
|
269 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
270 |
+
torch.cuda.set_device(args.local_rank)
|
271 |
+
device = torch.device("cuda", args.local_rank)
|
272 |
+
torch.distributed.init_process_group(backend='nccl')
|
273 |
+
args.n_gpu = 1
|
274 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
|
275 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))
|
276 |
+
args.device = device
|
277 |
+
# Set seed
|
278 |
+
set_seed(args)
|
279 |
+
# make dir if output_dir not exist
|
280 |
+
if os.path.exists(args.output_dir) is False:
|
281 |
+
os.makedirs(args.output_dir)
|
282 |
+
|
283 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
284 |
+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
|
285 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,do_lower_case=args.do_lower_case)
|
286 |
+
|
287 |
+
#budild model
|
288 |
+
encoder = model_class.from_pretrained(args.model_name_or_path,config=config)
|
289 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads)
|
290 |
+
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
|
291 |
+
model=Seq2Seq(encoder=encoder,decoder=decoder,config=config,
|
292 |
+
beam_size=args.beam_size,max_length=args.max_target_length,
|
293 |
+
sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id)
|
294 |
+
|
295 |
+
if args.load_model_path is not None:
|
296 |
+
logger.info("reload model from {}".format(args.load_model_path))
|
297 |
+
model.load_state_dict(torch.load(args.load_model_path))
|
298 |
+
|
299 |
+
model.to(device)
|
300 |
+
if args.local_rank != -1:
|
301 |
+
# Distributed training
|
302 |
+
try:
|
303 |
+
from apex.parallel import DistributedDataParallel as DDP
|
304 |
+
except ImportError:
|
305 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
|
306 |
+
|
307 |
+
model = DDP(model)
|
308 |
+
elif args.n_gpu > 1:
|
309 |
+
# multi-gpu training
|
310 |
+
model = torch.nn.DataParallel(model)
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
if args.do_train:
|
316 |
+
# Prepare training data loader
|
317 |
+
train_examples = read_examples(args.train_filename)
|
318 |
+
train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train')
|
319 |
+
all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long)
|
320 |
+
all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long)
|
321 |
+
all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long)
|
322 |
+
all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long)
|
323 |
+
train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask)
|
324 |
+
|
325 |
+
if args.local_rank == -1:
|
326 |
+
train_sampler = RandomSampler(train_data)
|
327 |
+
else:
|
328 |
+
train_sampler = DistributedSampler(train_data)
|
329 |
+
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps)
|
330 |
+
|
331 |
+
num_train_optimization_steps = args.train_steps
|
332 |
+
|
333 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
334 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
335 |
+
optimizer_grouped_parameters = [
|
336 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
337 |
+
'weight_decay': args.weight_decay},
|
338 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
339 |
+
]
|
340 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
341 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
|
342 |
+
num_training_steps=num_train_optimization_steps)
|
343 |
+
|
344 |
+
|
345 |
+
#Start training
|
346 |
+
logger.info("***** Running training *****")
|
347 |
+
logger.info(" Num examples = %d", len(train_examples))
|
348 |
+
logger.info(" Batch size = %d", args.train_batch_size)
|
349 |
+
logger.info(" Num epoch = %d", num_train_optimization_steps*args.train_batch_size//len(train_examples))
|
350 |
+
|
351 |
+
|
352 |
+
model.train()
|
353 |
+
dev_dataset={}
|
354 |
+
nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6
|
355 |
+
bar = range(num_train_optimization_steps)
|
356 |
+
train_dataloader=cycle(train_dataloader)
|
357 |
+
eval_flag = True
|
358 |
+
idx=0
|
359 |
+
for step in bar:
|
360 |
+
batch = next(train_dataloader)
|
361 |
+
batch = tuple(t.to(device) for t in batch)
|
362 |
+
source_ids,source_mask,target_ids,target_mask = batch
|
363 |
+
loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,target_ids=target_ids,target_mask=target_mask)
|
364 |
+
|
365 |
+
if args.n_gpu > 1:
|
366 |
+
loss = loss.mean() # mean() to average on multi-gpu.
|
367 |
+
if args.gradient_accumulation_steps > 1:
|
368 |
+
loss = loss / args.gradient_accumulation_steps
|
369 |
+
tr_loss += loss.item()
|
370 |
+
train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4)
|
371 |
+
if (global_step + 1)%100==0:
|
372 |
+
logger.info(" step {} loss {} batch-{}".format(global_step + 1,train_loss, ((global_step+1)*args.train_batch_size) / len(train_examples)))
|
373 |
+
nb_tr_examples += source_ids.size(0)
|
374 |
+
nb_tr_steps += 1
|
375 |
+
loss.backward()
|
376 |
+
|
377 |
+
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
|
378 |
+
#Update parameters
|
379 |
+
optimizer.step()
|
380 |
+
optimizer.zero_grad()
|
381 |
+
scheduler.step()
|
382 |
+
global_step += 1
|
383 |
+
eval_flag = True
|
384 |
+
|
385 |
+
|
386 |
+
if args.do_eval and ((global_step + 1) %args.eval_steps == 0) and eval_flag:
|
387 |
+
#Eval model with dev dataset
|
388 |
+
tr_loss = 0
|
389 |
+
nb_tr_examples, nb_tr_steps = 0, 0
|
390 |
+
eval_flag=False
|
391 |
+
if 'dev_loss' in dev_dataset:
|
392 |
+
eval_examples,eval_data=dev_dataset['dev_loss']
|
393 |
+
else:
|
394 |
+
eval_examples = read_examples(args.dev_filename)
|
395 |
+
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
|
396 |
+
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
|
397 |
+
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
|
398 |
+
all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long)
|
399 |
+
all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long)
|
400 |
+
eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask)
|
401 |
+
dev_dataset['dev_loss']=eval_examples,eval_data
|
402 |
+
eval_sampler = SequentialSampler(eval_data)
|
403 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
404 |
+
|
405 |
+
logger.info("\n***** Running evaluation *****")
|
406 |
+
logger.info(" Num examples = %d", len(eval_examples))
|
407 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
408 |
+
|
409 |
+
#Start Evaling model
|
410 |
+
model.eval()
|
411 |
+
eval_loss,tokens_num = 0,0
|
412 |
+
for batch in eval_dataloader:
|
413 |
+
batch = tuple(t.to(device) for t in batch)
|
414 |
+
source_ids,source_mask,target_ids,target_mask = batch
|
415 |
+
|
416 |
+
with torch.no_grad():
|
417 |
+
_,loss,num = model(source_ids=source_ids,source_mask=source_mask,
|
418 |
+
target_ids=target_ids,target_mask=target_mask)
|
419 |
+
eval_loss += loss.sum().item()
|
420 |
+
tokens_num += num.sum().item()
|
421 |
+
#Pring loss of dev dataset
|
422 |
+
model.train()
|
423 |
+
eval_loss = eval_loss / tokens_num
|
424 |
+
result = {'eval_ppl': round(np.exp(eval_loss),5),
|
425 |
+
'global_step': global_step+1,
|
426 |
+
'train_loss': round(train_loss,5)}
|
427 |
+
for key in sorted(result.keys()):
|
428 |
+
logger.info(" %s = %s", key, str(result[key]))
|
429 |
+
logger.info(" "+"*"*20)
|
430 |
+
|
431 |
+
#save last checkpoint
|
432 |
+
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
|
433 |
+
if not os.path.exists(last_output_dir):
|
434 |
+
os.makedirs(last_output_dir)
|
435 |
+
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
436 |
+
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
|
437 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
438 |
+
if eval_loss<best_loss:
|
439 |
+
logger.info(" Best ppl:%s",round(np.exp(eval_loss),5))
|
440 |
+
logger.info(" "+"*"*20)
|
441 |
+
best_loss=eval_loss
|
442 |
+
# Save best checkpoint for best ppl
|
443 |
+
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
|
444 |
+
if not os.path.exists(output_dir):
|
445 |
+
os.makedirs(output_dir)
|
446 |
+
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
447 |
+
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
|
448 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
449 |
+
|
450 |
+
|
451 |
+
#Calculate bleu
|
452 |
+
if 'dev_bleu' in dev_dataset:
|
453 |
+
eval_examples,eval_data=dev_dataset['dev_bleu']
|
454 |
+
else:
|
455 |
+
eval_examples = read_examples(args.dev_filename)
|
456 |
+
eval_examples = random.sample(eval_examples,min(1000,len(eval_examples)))
|
457 |
+
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
|
458 |
+
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
|
459 |
+
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
|
460 |
+
eval_data = TensorDataset(all_source_ids,all_source_mask)
|
461 |
+
dev_dataset['dev_bleu']=eval_examples,eval_data
|
462 |
+
|
463 |
+
|
464 |
+
eval_sampler = SequentialSampler(eval_data)
|
465 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
466 |
+
|
467 |
+
model.eval()
|
468 |
+
p=[]
|
469 |
+
for batch in eval_dataloader:
|
470 |
+
batch = tuple(t.to(device) for t in batch)
|
471 |
+
source_ids,source_mask= batch
|
472 |
+
with torch.no_grad():
|
473 |
+
preds = model(source_ids=source_ids,source_mask=source_mask)
|
474 |
+
for pred in preds:
|
475 |
+
t=pred[0].cpu().numpy()
|
476 |
+
t=list(t)
|
477 |
+
if 0 in t:
|
478 |
+
t=t[:t.index(0)]
|
479 |
+
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
|
480 |
+
p.append(text)
|
481 |
+
model.train()
|
482 |
+
predictions=[]
|
483 |
+
accs=[]
|
484 |
+
with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1:
|
485 |
+
for ref,gold in zip(p,eval_examples):
|
486 |
+
predictions.append(str(gold.idx)+'\t'+ref)
|
487 |
+
f.write(ref+'\n')
|
488 |
+
f1.write(gold.target+'\n')
|
489 |
+
accs.append(ref==gold.target)
|
490 |
+
|
491 |
+
dev_bleu=round(_bleu(os.path.join(args.output_dir, "dev.gold"), os.path.join(args.output_dir, "dev.output")),2)
|
492 |
+
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
|
493 |
+
logger.info(" %s = %s "%("xMatch",str(round(np.mean(accs)*100,4))))
|
494 |
+
logger.info(" "+"*"*20)
|
495 |
+
if dev_bleu>best_bleu:
|
496 |
+
logger.info(" Best bleu:%s",dev_bleu)
|
497 |
+
logger.info(" "+"*"*20)
|
498 |
+
best_bleu=dev_bleu
|
499 |
+
# Save best checkpoint for best bleu
|
500 |
+
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
|
501 |
+
if not os.path.exists(output_dir):
|
502 |
+
os.makedirs(output_dir)
|
503 |
+
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
504 |
+
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
|
505 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
506 |
+
|
507 |
+
# 每一轮记录checkpoint
|
508 |
+
if int((global_step+1)*args.train_batch_size / len(train_examples)) == idx+1:
|
509 |
+
logger.info(" batch:%s",idx)
|
510 |
+
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
|
511 |
+
if not os.path.exists(output_dir):
|
512 |
+
os.makedirs(output_dir)
|
513 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
514 |
+
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
|
515 |
+
logger.info("Saving model checkpoint to %s", ckpt_output_path)
|
516 |
+
torch.save(model_to_save.state_dict(), ckpt_output_path)
|
517 |
+
idx = idx+1
|
518 |
+
|
519 |
+
if args.do_test:
|
520 |
+
files=[]
|
521 |
+
if args.dev_filename is not None:
|
522 |
+
files.append(args.dev_filename)
|
523 |
+
if args.test_filename is not None:
|
524 |
+
files.append(args.test_filename)
|
525 |
+
for idx,file in enumerate(files):
|
526 |
+
logger.info("Test file: {}".format(file))
|
527 |
+
eval_examples = read_examples(file)
|
528 |
+
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
|
529 |
+
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
|
530 |
+
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
|
531 |
+
eval_data = TensorDataset(all_source_ids,all_source_mask)
|
532 |
+
|
533 |
+
# Calculate bleu
|
534 |
+
eval_sampler = SequentialSampler(eval_data)
|
535 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
536 |
+
|
537 |
+
model.eval()
|
538 |
+
p=[]
|
539 |
+
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
|
540 |
+
batch = tuple(t.to(device) for t in batch)
|
541 |
+
source_ids,source_mask= batch
|
542 |
+
with torch.no_grad():
|
543 |
+
preds = model(source_ids=source_ids,source_mask=source_mask)
|
544 |
+
for pred in preds:
|
545 |
+
t=pred[0].cpu().numpy()
|
546 |
+
t=list(t)
|
547 |
+
if 0 in t:
|
548 |
+
t=t[:t.index(0)]
|
549 |
+
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
|
550 |
+
p.append(text)
|
551 |
+
model.train()
|
552 |
+
predictions=[]
|
553 |
+
accs=[]
|
554 |
+
with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1:
|
555 |
+
for ref,gold in zip(p,eval_examples):
|
556 |
+
predictions.append(str(gold.idx)+'\t'+ref)
|
557 |
+
f.write(ref+'\n')
|
558 |
+
f1.write(gold.target+'\n')
|
559 |
+
accs.append(ref==gold.target)
|
560 |
+
dev_bleu=round(_bleu(os.path.join(args.output_dir, "test_{}.gold".format(str(idx))).format(file),
|
561 |
+
os.path.join(args.output_dir, "test_{}.output".format(str(idx))).format(file)),2)
|
562 |
+
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
|
563 |
+
logger.info(" %s = %s "%("xMatch",str(round(np.mean(accs)*100,4))))
|
564 |
+
logger.info(" "+"*"*20)
|
565 |
+
|
566 |
+
|
567 |
+
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
main()
|
574 |
+
|
575 |
+
|
Code-Code/code-refinement/code/train.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model=microsoft/codebert-base
|
2 |
+
output_dir=../model
|
3 |
+
data_size=small
|
4 |
+
|
5 |
+
CUDA_VISIBLE_DEVICES=1 python run.py \
|
6 |
+
--do_train \
|
7 |
+
--do_eval \
|
8 |
+
--model_type roberta \
|
9 |
+
--model_name_or_path $pretrained_model \
|
10 |
+
--config_name roberta-base \
|
11 |
+
--tokenizer_name roberta-base \
|
12 |
+
--train_filename ../data/$data_size/train.buggy-fixed.buggy,../data/$data_size/train.buggy-fixed.fixed \
|
13 |
+
--dev_filename ../data/$data_size/valid.buggy-fixed.buggy,../data/$data_size/valid.buggy-fixed.fixed \
|
14 |
+
--output_dir $output_dir \
|
15 |
+
--max_source_length 256 \
|
16 |
+
--max_target_length 256 \
|
17 |
+
--beam_size 5 \
|
18 |
+
--train_batch_size 16 \
|
19 |
+
--eval_batch_size 16 \
|
20 |
+
--learning_rate 5e-5 \
|
21 |
+
--train_steps 100000 \
|
22 |
+
--eval_steps 5000
|
Code-Code/code-refinement/dataset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:777c3c2c8db2e206e35336adda286979caea2dd7627f86be63ad9313d6dd5c29
|
3 |
+
size 9317188
|
Code-Text/code-to-text/code/bleu.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
'''
|
4 |
+
This script was adapted from the original version by hieuhoang1972 which is part of MOSES.
|
5 |
+
'''
|
6 |
+
|
7 |
+
# $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $
|
8 |
+
|
9 |
+
'''Provides:
|
10 |
+
|
11 |
+
cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test().
|
12 |
+
cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked().
|
13 |
+
score_cooked(alltest, n=4): Score a list of cooked test sentences.
|
14 |
+
|
15 |
+
score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids.
|
16 |
+
|
17 |
+
The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible.
|
18 |
+
'''
|
19 |
+
|
20 |
+
import sys, math, re, xml.sax.saxutils
|
21 |
+
import subprocess
|
22 |
+
import os
|
23 |
+
|
24 |
+
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
25 |
+
nonorm = 0
|
26 |
+
|
27 |
+
preserve_case = False
|
28 |
+
eff_ref_len = "shortest"
|
29 |
+
|
30 |
+
normalize1 = [
|
31 |
+
('<skipped>', ''), # strip "skipped" tags
|
32 |
+
(r'-\n', ''), # strip end-of-line hyphenation and join lines
|
33 |
+
(r'\n', ' '), # join lines
|
34 |
+
# (r'(\d)\s+(?=\d)', r'\1'), # join digits
|
35 |
+
]
|
36 |
+
normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1]
|
37 |
+
|
38 |
+
normalize2 = [
|
39 |
+
(r'([\{-\~\[-\` -\&\(-\+\:-\@\/])',r' \1 '), # tokenize punctuation. apostrophe is missing
|
40 |
+
(r'([^0-9])([\.,])',r'\1 \2 '), # tokenize period and comma unless preceded by a digit
|
41 |
+
(r'([\.,])([^0-9])',r' \1 \2'), # tokenize period and comma unless followed by a digit
|
42 |
+
(r'([0-9])(-)',r'\1 \2 ') # tokenize dash when preceded by a digit
|
43 |
+
]
|
44 |
+
normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2]
|
45 |
+
|
46 |
+
def normalize(s):
|
47 |
+
'''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.'''
|
48 |
+
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
49 |
+
if (nonorm):
|
50 |
+
return s.split()
|
51 |
+
if type(s) is not str:
|
52 |
+
s = " ".join(s)
|
53 |
+
# language-independent part:
|
54 |
+
for (pattern, replace) in normalize1:
|
55 |
+
s = re.sub(pattern, replace, s)
|
56 |
+
s = xml.sax.saxutils.unescape(s, {'"':'"'})
|
57 |
+
# language-dependent part (assuming Western languages):
|
58 |
+
s = " %s " % s
|
59 |
+
if not preserve_case:
|
60 |
+
s = s.lower() # this might not be identical to the original
|
61 |
+
for (pattern, replace) in normalize2:
|
62 |
+
s = re.sub(pattern, replace, s)
|
63 |
+
return s.split()
|
64 |
+
|
65 |
+
def count_ngrams(words, n=4):
|
66 |
+
counts = {}
|
67 |
+
for k in range(1,n+1):
|
68 |
+
for i in range(len(words)-k+1):
|
69 |
+
ngram = tuple(words[i:i+k])
|
70 |
+
counts[ngram] = counts.get(ngram, 0)+1
|
71 |
+
return counts
|
72 |
+
|
73 |
+
def cook_refs(refs, n=4):
|
74 |
+
'''Takes a list of reference sentences for a single segment
|
75 |
+
and returns an object that encapsulates everything that BLEU
|
76 |
+
needs to know about them.'''
|
77 |
+
|
78 |
+
refs = [normalize(ref) for ref in refs]
|
79 |
+
maxcounts = {}
|
80 |
+
for ref in refs:
|
81 |
+
counts = count_ngrams(ref, n)
|
82 |
+
for (ngram,count) in counts.items():
|
83 |
+
maxcounts[ngram] = max(maxcounts.get(ngram,0), count)
|
84 |
+
return ([len(ref) for ref in refs], maxcounts)
|
85 |
+
|
86 |
+
def cook_test(test, item, n=4):
|
87 |
+
'''Takes a test sentence and returns an object that
|
88 |
+
encapsulates everything that BLEU needs to know about it.'''
|
89 |
+
(reflens, refmaxcounts)=item
|
90 |
+
test = normalize(test)
|
91 |
+
result = {}
|
92 |
+
result["testlen"] = len(test)
|
93 |
+
|
94 |
+
# Calculate effective reference sentence length.
|
95 |
+
|
96 |
+
if eff_ref_len == "shortest":
|
97 |
+
result["reflen"] = min(reflens)
|
98 |
+
elif eff_ref_len == "average":
|
99 |
+
result["reflen"] = float(sum(reflens))/len(reflens)
|
100 |
+
elif eff_ref_len == "closest":
|
101 |
+
min_diff = None
|
102 |
+
for reflen in reflens:
|
103 |
+
if min_diff is None or abs(reflen-len(test)) < min_diff:
|
104 |
+
min_diff = abs(reflen-len(test))
|
105 |
+
result['reflen'] = reflen
|
106 |
+
|
107 |
+
result["guess"] = [max(len(test)-k+1,0) for k in range(1,n+1)]
|
108 |
+
|
109 |
+
result['correct'] = [0]*n
|
110 |
+
counts = count_ngrams(test, n)
|
111 |
+
for (ngram, count) in counts.items():
|
112 |
+
result["correct"][len(ngram)-1] += min(refmaxcounts.get(ngram,0), count)
|
113 |
+
|
114 |
+
return result
|
115 |
+
|
116 |
+
def score_cooked(allcomps, n=4, ground=0, smooth=1):
|
117 |
+
totalcomps = {'testlen':0, 'reflen':0, 'guess':[0]*n, 'correct':[0]*n}
|
118 |
+
for comps in allcomps:
|
119 |
+
for key in ['testlen','reflen']:
|
120 |
+
totalcomps[key] += comps[key]
|
121 |
+
for key in ['guess','correct']:
|
122 |
+
for k in range(n):
|
123 |
+
totalcomps[key][k] += comps[key][k]
|
124 |
+
logbleu = 0.0
|
125 |
+
all_bleus = []
|
126 |
+
for k in range(n):
|
127 |
+
correct = totalcomps['correct'][k]
|
128 |
+
guess = totalcomps['guess'][k]
|
129 |
+
addsmooth = 0
|
130 |
+
if smooth == 1 and k > 0:
|
131 |
+
addsmooth = 1
|
132 |
+
logbleu += math.log(correct + addsmooth + sys.float_info.min)-math.log(guess + addsmooth+ sys.float_info.min)
|
133 |
+
if guess == 0:
|
134 |
+
all_bleus.append(-10000000)
|
135 |
+
else:
|
136 |
+
all_bleus.append(math.log(correct + sys.float_info.min)-math.log( guess ))
|
137 |
+
|
138 |
+
logbleu /= float(n)
|
139 |
+
all_bleus.insert(0, logbleu)
|
140 |
+
|
141 |
+
brevPenalty = min(0,1-float(totalcomps['reflen'] + 1)/(totalcomps['testlen'] + 1))
|
142 |
+
for i in range(len(all_bleus)):
|
143 |
+
if i ==0:
|
144 |
+
all_bleus[i] += brevPenalty
|
145 |
+
all_bleus[i] = math.exp(all_bleus[i])
|
146 |
+
return all_bleus
|
147 |
+
|
148 |
+
def bleu(refs, candidate, ground=0, smooth=1):
|
149 |
+
refs = cook_refs(refs)
|
150 |
+
test = cook_test(candidate, refs)
|
151 |
+
return score_cooked([test], ground=ground, smooth=smooth)
|
152 |
+
|
153 |
+
def splitPuncts(line):
|
154 |
+
return ' '.join(re.findall(r"[\w]+|[^\s\w]", line))
|
155 |
+
|
156 |
+
def computeMaps(predictions, goldfile):
|
157 |
+
predictionMap = {}
|
158 |
+
goldMap = {}
|
159 |
+
gf = open(goldfile, 'r')
|
160 |
+
|
161 |
+
for row in predictions:
|
162 |
+
cols = row.strip().split('\t')
|
163 |
+
if len(cols) == 1:
|
164 |
+
(rid, pred) = (cols[0], '')
|
165 |
+
else:
|
166 |
+
(rid, pred) = (cols[0], cols[1])
|
167 |
+
predictionMap[rid] = [splitPuncts(pred.strip().lower())]
|
168 |
+
|
169 |
+
for row in gf:
|
170 |
+
(rid, pred) = row.split('\t')
|
171 |
+
if rid in predictionMap: # Only insert if the id exists for the method
|
172 |
+
if rid not in goldMap:
|
173 |
+
goldMap[rid] = []
|
174 |
+
goldMap[rid].append(splitPuncts(pred.strip().lower()))
|
175 |
+
|
176 |
+
sys.stderr.write('Total: ' + str(len(goldMap)) + '\n')
|
177 |
+
return (goldMap, predictionMap)
|
178 |
+
|
179 |
+
|
180 |
+
#m1 is the reference map
|
181 |
+
#m2 is the prediction map
|
182 |
+
def bleuFromMaps(m1, m2):
|
183 |
+
score = [0] * 5
|
184 |
+
num = 0.0
|
185 |
+
|
186 |
+
for key in m1:
|
187 |
+
if key in m2:
|
188 |
+
bl = bleu(m1[key], m2[key][0])
|
189 |
+
score = [ score[i] + bl[i] for i in range(0, len(bl))]
|
190 |
+
num += 1
|
191 |
+
return [s * 100.0 / num for s in score]
|
192 |
+
|
193 |
+
if __name__ == '__main__':
|
194 |
+
reference_file = sys.argv[1]
|
195 |
+
predictions = []
|
196 |
+
for row in sys.stdin:
|
197 |
+
predictions.append(row)
|
198 |
+
(goldMap, predictionMap) = computeMaps(predictions, reference_file)
|
199 |
+
print (bleuFromMaps(goldMap, predictionMap)[0])
|
200 |
+
|
Code-Text/code-to-text/code/evaluate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lang=python
|
2 |
+
gold_file=../model/$lang/dev.gold
|
3 |
+
output_file=../model/$lang/dev.output
|
4 |
+
|
5 |
+
python evaluator.py \
|
6 |
+
$gold_file < $output_file
|
Code-Text/code-to-text/code/evaluator.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
'''
|
4 |
+
This script was adapted from the original version by hieuhoang1972 which is part of MOSES.
|
5 |
+
'''
|
6 |
+
|
7 |
+
# $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $
|
8 |
+
|
9 |
+
'''Provides:
|
10 |
+
|
11 |
+
cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test().
|
12 |
+
cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked().
|
13 |
+
score_cooked(alltest, n=4): Score a list of cooked test sentences.
|
14 |
+
|
15 |
+
score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids.
|
16 |
+
|
17 |
+
The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible.
|
18 |
+
'''
|
19 |
+
|
20 |
+
import sys, math, re, xml.sax.saxutils
|
21 |
+
import subprocess
|
22 |
+
import os
|
23 |
+
|
24 |
+
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
25 |
+
nonorm = 0
|
26 |
+
|
27 |
+
preserve_case = False
|
28 |
+
eff_ref_len = "shortest"
|
29 |
+
|
30 |
+
normalize1 = [
|
31 |
+
('<skipped>', ''), # strip "skipped" tags
|
32 |
+
(r'-\n', ''), # strip end-of-line hyphenation and join lines
|
33 |
+
(r'\n', ' '), # join lines
|
34 |
+
# (r'(\d)\s+(?=\d)', r'\1'), # join digits
|
35 |
+
]
|
36 |
+
normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1]
|
37 |
+
|
38 |
+
normalize2 = [
|
39 |
+
(r'([\{-\~\[-\` -\&\(-\+\:-\@\/])',r' \1 '), # tokenize punctuation. apostrophe is missing
|
40 |
+
(r'([^0-9])([\.,])',r'\1 \2 '), # tokenize period and comma unless preceded by a digit
|
41 |
+
(r'([\.,])([^0-9])',r' \1 \2'), # tokenize period and comma unless followed by a digit
|
42 |
+
(r'([0-9])(-)',r'\1 \2 ') # tokenize dash when preceded by a digit
|
43 |
+
]
|
44 |
+
normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2]
|
45 |
+
|
46 |
+
def normalize(s):
|
47 |
+
'''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.'''
|
48 |
+
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
49 |
+
if (nonorm):
|
50 |
+
return s.split()
|
51 |
+
if type(s) is not str:
|
52 |
+
s = " ".join(s)
|
53 |
+
# language-independent part:
|
54 |
+
for (pattern, replace) in normalize1:
|
55 |
+
s = re.sub(pattern, replace, s)
|
56 |
+
s = xml.sax.saxutils.unescape(s, {'"':'"'})
|
57 |
+
# language-dependent part (assuming Western languages):
|
58 |
+
s = " %s " % s
|
59 |
+
if not preserve_case:
|
60 |
+
s = s.lower() # this might not be identical to the original
|
61 |
+
for (pattern, replace) in normalize2:
|
62 |
+
s = re.sub(pattern, replace, s)
|
63 |
+
return s.split()
|
64 |
+
|
65 |
+
def count_ngrams(words, n=4):
|
66 |
+
counts = {}
|
67 |
+
for k in range(1,n+1):
|
68 |
+
for i in range(len(words)-k+1):
|
69 |
+
ngram = tuple(words[i:i+k])
|
70 |
+
counts[ngram] = counts.get(ngram, 0)+1
|
71 |
+
return counts
|
72 |
+
|
73 |
+
def cook_refs(refs, n=4):
|
74 |
+
'''Takes a list of reference sentences for a single segment
|
75 |
+
and returns an object that encapsulates everything that BLEU
|
76 |
+
needs to know about them.'''
|
77 |
+
|
78 |
+
refs = [normalize(ref) for ref in refs]
|
79 |
+
maxcounts = {}
|
80 |
+
for ref in refs:
|
81 |
+
counts = count_ngrams(ref, n)
|
82 |
+
for (ngram,count) in counts.items():
|
83 |
+
maxcounts[ngram] = max(maxcounts.get(ngram,0), count)
|
84 |
+
return ([len(ref) for ref in refs], maxcounts)
|
85 |
+
|
86 |
+
def cook_test(test, item, n=4):
|
87 |
+
'''Takes a test sentence and returns an object that
|
88 |
+
encapsulates everything that BLEU needs to know about it.'''
|
89 |
+
(reflens, refmaxcounts)=item
|
90 |
+
test = normalize(test)
|
91 |
+
result = {}
|
92 |
+
result["testlen"] = len(test)
|
93 |
+
|
94 |
+
# Calculate effective reference sentence length.
|
95 |
+
|
96 |
+
if eff_ref_len == "shortest":
|
97 |
+
result["reflen"] = min(reflens)
|
98 |
+
elif eff_ref_len == "average":
|
99 |
+
result["reflen"] = float(sum(reflens))/len(reflens)
|
100 |
+
elif eff_ref_len == "closest":
|
101 |
+
min_diff = None
|
102 |
+
for reflen in reflens:
|
103 |
+
if min_diff is None or abs(reflen-len(test)) < min_diff:
|
104 |
+
min_diff = abs(reflen-len(test))
|
105 |
+
result['reflen'] = reflen
|
106 |
+
|
107 |
+
result["guess"] = [max(len(test)-k+1,0) for k in range(1,n+1)]
|
108 |
+
|
109 |
+
result['correct'] = [0]*n
|
110 |
+
counts = count_ngrams(test, n)
|
111 |
+
for (ngram, count) in counts.items():
|
112 |
+
result["correct"][len(ngram)-1] += min(refmaxcounts.get(ngram,0), count)
|
113 |
+
|
114 |
+
return result
|
115 |
+
|
116 |
+
def score_cooked(allcomps, n=4, ground=0, smooth=1):
|
117 |
+
totalcomps = {'testlen':0, 'reflen':0, 'guess':[0]*n, 'correct':[0]*n}
|
118 |
+
for comps in allcomps:
|
119 |
+
for key in ['testlen','reflen']:
|
120 |
+
totalcomps[key] += comps[key]
|
121 |
+
for key in ['guess','correct']:
|
122 |
+
for k in range(n):
|
123 |
+
totalcomps[key][k] += comps[key][k]
|
124 |
+
logbleu = 0.0
|
125 |
+
all_bleus = []
|
126 |
+
for k in range(n):
|
127 |
+
correct = totalcomps['correct'][k]
|
128 |
+
guess = totalcomps['guess'][k]
|
129 |
+
addsmooth = 0
|
130 |
+
if smooth == 1 and k > 0:
|
131 |
+
addsmooth = 1
|
132 |
+
logbleu += math.log(correct + addsmooth + sys.float_info.min)-math.log(guess + addsmooth+ sys.float_info.min)
|
133 |
+
if guess == 0:
|
134 |
+
all_bleus.append(-10000000)
|
135 |
+
else:
|
136 |
+
all_bleus.append(math.log(correct + sys.float_info.min)-math.log( guess ))
|
137 |
+
|
138 |
+
logbleu /= float(n)
|
139 |
+
all_bleus.insert(0, logbleu)
|
140 |
+
|
141 |
+
brevPenalty = min(0,1-float(totalcomps['reflen'] + 1)/(totalcomps['testlen'] + 1))
|
142 |
+
for i in range(len(all_bleus)):
|
143 |
+
if i ==0:
|
144 |
+
all_bleus[i] += brevPenalty
|
145 |
+
all_bleus[i] = math.exp(all_bleus[i])
|
146 |
+
return all_bleus
|
147 |
+
|
148 |
+
def bleu(refs, candidate, ground=0, smooth=1):
|
149 |
+
refs = cook_refs(refs)
|
150 |
+
test = cook_test(candidate, refs)
|
151 |
+
return score_cooked([test], ground=ground, smooth=smooth)
|
152 |
+
|
153 |
+
def splitPuncts(line):
|
154 |
+
return ' '.join(re.findall(r"[\w]+|[^\s\w]", line))
|
155 |
+
|
156 |
+
def computeMaps(predictions, goldfile):
|
157 |
+
predictionMap = {}
|
158 |
+
goldMap = {}
|
159 |
+
gf = open(goldfile, 'r')
|
160 |
+
|
161 |
+
for row in predictions:
|
162 |
+
cols = row.strip().split('\t')
|
163 |
+
if len(cols) == 1:
|
164 |
+
(rid, pred) = (cols[0], '')
|
165 |
+
else:
|
166 |
+
(rid, pred) = (cols[0], cols[1])
|
167 |
+
predictionMap[rid] = [splitPuncts(pred.strip().lower())]
|
168 |
+
|
169 |
+
for row in gf:
|
170 |
+
(rid, pred) = row.split('\t')
|
171 |
+
if rid in predictionMap: # Only insert if the id exists for the method
|
172 |
+
if rid not in goldMap:
|
173 |
+
goldMap[rid] = []
|
174 |
+
goldMap[rid].append(splitPuncts(pred.strip().lower()))
|
175 |
+
|
176 |
+
sys.stderr.write('Total: ' + str(len(goldMap)) + '\n')
|
177 |
+
return (goldMap, predictionMap)
|
178 |
+
|
179 |
+
|
180 |
+
#m1 is the reference map
|
181 |
+
#m2 is the prediction map
|
182 |
+
def bleuFromMaps(m1, m2):
|
183 |
+
score = [0] * 5
|
184 |
+
num = 0.0
|
185 |
+
|
186 |
+
for key in m1:
|
187 |
+
if key in m2:
|
188 |
+
bl = bleu(m1[key], m2[key][0])
|
189 |
+
score = [ score[i] + bl[i] for i in range(0, len(bl))]
|
190 |
+
num += 1
|
191 |
+
return [s * 100.0 / num for s in score]
|
192 |
+
|
193 |
+
if __name__ == '__main__':
|
194 |
+
reference_file = sys.argv[1]
|
195 |
+
predictions = []
|
196 |
+
for row in sys.stdin:
|
197 |
+
predictions.append(row)
|
198 |
+
(goldMap, predictionMap) = computeMaps(predictions, reference_file)
|
199 |
+
print (bleuFromMaps(goldMap, predictionMap)[0])
|
200 |
+
|
Code-Text/code-to-text/code/model.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch
|
7 |
+
from torch.autograd import Variable
|
8 |
+
import copy
|
9 |
+
class Seq2Seq(nn.Module):
|
10 |
+
"""
|
11 |
+
Build Seqence-to-Sequence.
|
12 |
+
|
13 |
+
Parameters:
|
14 |
+
|
15 |
+
* `encoder`- encoder of seq2seq model. e.g. roberta
|
16 |
+
* `decoder`- decoder of seq2seq model. e.g. transformer
|
17 |
+
* `config`- configuration of encoder model.
|
18 |
+
* `beam_size`- beam size for beam search.
|
19 |
+
* `max_length`- max length of target for beam search.
|
20 |
+
* `sos_id`- start of symbol ids in target for beam search.
|
21 |
+
* `eos_id`- end of symbol ids in target for beam search.
|
22 |
+
"""
|
23 |
+
def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None):
|
24 |
+
super(Seq2Seq, self).__init__()
|
25 |
+
self.encoder = encoder
|
26 |
+
self.decoder=decoder
|
27 |
+
self.config=config
|
28 |
+
self.register_buffer("bias", torch.tril(torch.ones(2048, 2048)))
|
29 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
30 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
31 |
+
self.lsm = nn.LogSoftmax(dim=-1)
|
32 |
+
self.tie_weights()
|
33 |
+
|
34 |
+
self.beam_size=beam_size
|
35 |
+
self.max_length=max_length
|
36 |
+
self.sos_id=sos_id
|
37 |
+
self.eos_id=eos_id
|
38 |
+
|
39 |
+
def _tie_or_clone_weights(self, first_module, second_module):
|
40 |
+
""" Tie or clone module weights depending of weither we are using TorchScript or not
|
41 |
+
"""
|
42 |
+
if self.config.torchscript:
|
43 |
+
first_module.weight = nn.Parameter(second_module.weight.clone())
|
44 |
+
else:
|
45 |
+
first_module.weight = second_module.weight
|
46 |
+
|
47 |
+
def tie_weights(self):
|
48 |
+
""" Make sure we are sharing the input and output embeddings.
|
49 |
+
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
50 |
+
"""
|
51 |
+
self._tie_or_clone_weights(self.lm_head,
|
52 |
+
self.encoder.embeddings.word_embeddings)
|
53 |
+
|
54 |
+
def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None):
|
55 |
+
outputs = self.encoder(source_ids, attention_mask=source_mask)
|
56 |
+
encoder_output = outputs[0].permute([1,0,2]).contiguous()
|
57 |
+
if target_ids is not None:
|
58 |
+
attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]])
|
59 |
+
tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous()
|
60 |
+
out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool())
|
61 |
+
hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous()
|
62 |
+
lm_logits = self.lm_head(hidden_states)
|
63 |
+
# Shift so that tokens < n predict n
|
64 |
+
active_loss = target_mask[..., 1:].ne(0).view(-1) == 1
|
65 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
66 |
+
shift_labels = target_ids[..., 1:].contiguous()
|
67 |
+
# Flatten the tokens
|
68 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
|
69 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss],
|
70 |
+
shift_labels.view(-1)[active_loss])
|
71 |
+
|
72 |
+
outputs = loss,loss*active_loss.sum(),active_loss.sum()
|
73 |
+
return outputs
|
74 |
+
else:
|
75 |
+
#Predict
|
76 |
+
preds=[]
|
77 |
+
zero=torch.cuda.LongTensor(1).fill_(0)
|
78 |
+
for i in range(source_ids.shape[0]):
|
79 |
+
context=encoder_output[:,i:i+1]
|
80 |
+
context_mask=source_mask[i:i+1,:]
|
81 |
+
beam = Beam(self.beam_size,self.sos_id,self.eos_id)
|
82 |
+
input_ids=beam.getCurrentState()
|
83 |
+
context=context.repeat(1, self.beam_size,1)
|
84 |
+
context_mask=context_mask.repeat(self.beam_size,1)
|
85 |
+
for _ in range(self.max_length):
|
86 |
+
if beam.done():
|
87 |
+
break
|
88 |
+
attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]])
|
89 |
+
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous()
|
90 |
+
out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool())
|
91 |
+
out = torch.tanh(self.dense(out))
|
92 |
+
hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:]
|
93 |
+
out = self.lsm(self.lm_head(hidden_states)).data
|
94 |
+
beam.advance(out)
|
95 |
+
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
|
96 |
+
input_ids=torch.cat((input_ids,beam.getCurrentState()),-1)
|
97 |
+
hyp= beam.getHyp(beam.getFinal())
|
98 |
+
pred=beam.buildTargetTokens(hyp)[:self.beam_size]
|
99 |
+
pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred]
|
100 |
+
preds.append(torch.cat(pred,0).unsqueeze(0))
|
101 |
+
|
102 |
+
preds=torch.cat(preds,0)
|
103 |
+
return preds
|
104 |
+
|
105 |
+
def feature(self, source_ids,source_mask):
|
106 |
+
outputs = self.encoder(source_ids, attention_mask=source_mask)
|
107 |
+
return outputs.pooler_output
|
108 |
+
|
109 |
+
|
110 |
+
class Beam(object):
|
111 |
+
def __init__(self, size,sos,eos):
|
112 |
+
self.size = size
|
113 |
+
self.tt = torch.cuda
|
114 |
+
# The score for each translation on the beam.
|
115 |
+
self.scores = self.tt.FloatTensor(size).zero_()
|
116 |
+
# The backpointers at each time-step.
|
117 |
+
self.prevKs = []
|
118 |
+
# The outputs at each time-step.
|
119 |
+
self.nextYs = [self.tt.LongTensor(size)
|
120 |
+
.fill_(0)]
|
121 |
+
self.nextYs[0][0] = sos
|
122 |
+
# Has EOS topped the beam yet.
|
123 |
+
self._eos = eos
|
124 |
+
self.eosTop = False
|
125 |
+
# Time and k pair for finished.
|
126 |
+
self.finished = []
|
127 |
+
|
128 |
+
def getCurrentState(self):
|
129 |
+
"Get the outputs for the current timestep."
|
130 |
+
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1)
|
131 |
+
return batch
|
132 |
+
|
133 |
+
def getCurrentOrigin(self):
|
134 |
+
"Get the backpointers for the current timestep."
|
135 |
+
return self.prevKs[-1]
|
136 |
+
|
137 |
+
def advance(self, wordLk):
|
138 |
+
"""
|
139 |
+
Given prob over words for every last beam `wordLk` and attention
|
140 |
+
`attnOut`: Compute and update the beam search.
|
141 |
+
|
142 |
+
Parameters:
|
143 |
+
|
144 |
+
* `wordLk`- probs of advancing from the last step (K x words)
|
145 |
+
* `attnOut`- attention at the last step
|
146 |
+
|
147 |
+
Returns: True if beam search is complete.
|
148 |
+
"""
|
149 |
+
numWords = wordLk.size(1)
|
150 |
+
|
151 |
+
# Sum the previous scores.
|
152 |
+
if len(self.prevKs) > 0:
|
153 |
+
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
|
154 |
+
|
155 |
+
# Don't let EOS have children.
|
156 |
+
for i in range(self.nextYs[-1].size(0)):
|
157 |
+
if self.nextYs[-1][i] == self._eos:
|
158 |
+
beamLk[i] = -1e20
|
159 |
+
else:
|
160 |
+
beamLk = wordLk[0]
|
161 |
+
flatBeamLk = beamLk.view(-1)
|
162 |
+
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
|
163 |
+
|
164 |
+
self.scores = bestScores
|
165 |
+
|
166 |
+
# bestScoresId is flattened beam x word array, so calculate which
|
167 |
+
# word and beam each score came from
|
168 |
+
prevK = bestScoresId // numWords
|
169 |
+
self.prevKs.append(prevK)
|
170 |
+
self.nextYs.append((bestScoresId - prevK * numWords))
|
171 |
+
|
172 |
+
|
173 |
+
for i in range(self.nextYs[-1].size(0)):
|
174 |
+
if self.nextYs[-1][i] == self._eos:
|
175 |
+
s = self.scores[i]
|
176 |
+
self.finished.append((s, len(self.nextYs) - 1, i))
|
177 |
+
|
178 |
+
# End condition is when top-of-beam is EOS and no global score.
|
179 |
+
if self.nextYs[-1][0] == self._eos:
|
180 |
+
self.eosTop = True
|
181 |
+
|
182 |
+
def done(self):
|
183 |
+
return self.eosTop and len(self.finished) >=self.size
|
184 |
+
|
185 |
+
def getFinal(self):
|
186 |
+
if len(self.finished) == 0:
|
187 |
+
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
|
188 |
+
self.finished.sort(key=lambda a: -a[0])
|
189 |
+
if len(self.finished) != self.size:
|
190 |
+
unfinished=[]
|
191 |
+
for i in range(self.nextYs[-1].size(0)):
|
192 |
+
if self.nextYs[-1][i] != self._eos:
|
193 |
+
s = self.scores[i]
|
194 |
+
unfinished.append((s, len(self.nextYs) - 1, i))
|
195 |
+
unfinished.sort(key=lambda a: -a[0])
|
196 |
+
self.finished+=unfinished[:self.size-len(self.finished)]
|
197 |
+
return self.finished[:self.size]
|
198 |
+
|
199 |
+
def getHyp(self, beam_res):
|
200 |
+
"""
|
201 |
+
Walk back to construct the full hypothesis.
|
202 |
+
"""
|
203 |
+
hyps=[]
|
204 |
+
for _,timestep, k in beam_res:
|
205 |
+
hyp = []
|
206 |
+
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
|
207 |
+
hyp.append(self.nextYs[j+1][k])
|
208 |
+
k = self.prevKs[j][k]
|
209 |
+
hyps.append(hyp[::-1])
|
210 |
+
return hyps
|
211 |
+
|
212 |
+
def buildTargetTokens(self, preds):
|
213 |
+
sentence=[]
|
214 |
+
for pred in preds:
|
215 |
+
tokens = []
|
216 |
+
for tok in pred:
|
217 |
+
if tok==self._eos:
|
218 |
+
break
|
219 |
+
tokens.append(tok)
|
220 |
+
sentence.append(tokens)
|
221 |
+
return sentence
|
222 |
+
|
Code-Text/code-to-text/code/run.py
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
18 |
+
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
19 |
+
using a masked language modeling (MLM) loss.
|
20 |
+
"""
|
21 |
+
|
22 |
+
from __future__ import absolute_import
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
import bleu
|
26 |
+
import pickle
|
27 |
+
import torch
|
28 |
+
import json
|
29 |
+
import random
|
30 |
+
import logging
|
31 |
+
import argparse
|
32 |
+
import numpy as np
|
33 |
+
from io import open
|
34 |
+
from itertools import cycle
|
35 |
+
import torch.nn as nn
|
36 |
+
from model import Seq2Seq
|
37 |
+
from tqdm import tqdm, trange
|
38 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
|
39 |
+
from torch.utils.data.distributed import DistributedSampler
|
40 |
+
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
|
41 |
+
RobertaConfig, RobertaModel, RobertaTokenizer)
|
42 |
+
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}
|
43 |
+
|
44 |
+
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
45 |
+
datefmt = '%m/%d/%Y %H:%M:%S',
|
46 |
+
level = logging.INFO)
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
class Example(object):
|
50 |
+
"""A single training/test example."""
|
51 |
+
def __init__(self,
|
52 |
+
idx,
|
53 |
+
source,
|
54 |
+
target,
|
55 |
+
):
|
56 |
+
self.idx = idx
|
57 |
+
self.source = source
|
58 |
+
self.target = target
|
59 |
+
|
60 |
+
def read_examples(filename):
|
61 |
+
"""Read examples from filename."""
|
62 |
+
examples=[]
|
63 |
+
with open(filename,encoding="utf-8") as f:
|
64 |
+
for idx, line in enumerate(f):
|
65 |
+
line=line.strip()
|
66 |
+
js=json.loads(line)
|
67 |
+
if 'idx' not in js:
|
68 |
+
js['idx']=idx
|
69 |
+
code=' '.join(js['code_tokens']).replace('\n',' ')
|
70 |
+
code=' '.join(code.strip().split())
|
71 |
+
nl=' '.join(js['docstring_tokens']).replace('\n','')
|
72 |
+
nl=' '.join(nl.strip().split())
|
73 |
+
examples.append(
|
74 |
+
Example(
|
75 |
+
idx = idx,
|
76 |
+
source=code,
|
77 |
+
target = nl,
|
78 |
+
)
|
79 |
+
)
|
80 |
+
return examples
|
81 |
+
|
82 |
+
|
83 |
+
class InputFeatures(object):
|
84 |
+
"""A single training/test features for a example."""
|
85 |
+
def __init__(self,
|
86 |
+
example_id,
|
87 |
+
source_ids,
|
88 |
+
target_ids,
|
89 |
+
source_mask,
|
90 |
+
target_mask,
|
91 |
+
|
92 |
+
):
|
93 |
+
self.example_id = example_id
|
94 |
+
self.source_ids = source_ids
|
95 |
+
self.target_ids = target_ids
|
96 |
+
self.source_mask = source_mask
|
97 |
+
self.target_mask = target_mask
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
def convert_examples_to_features(examples, tokenizer, args,stage=None):
|
102 |
+
features = []
|
103 |
+
for example_index, example in enumerate(examples):
|
104 |
+
#source
|
105 |
+
source_tokens = tokenizer.tokenize(example.source)[:args.max_source_length-2]
|
106 |
+
source_tokens =[tokenizer.cls_token]+source_tokens+[tokenizer.sep_token]
|
107 |
+
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
|
108 |
+
source_mask = [1] * (len(source_tokens))
|
109 |
+
padding_length = args.max_source_length - len(source_ids)
|
110 |
+
source_ids+=[tokenizer.pad_token_id]*padding_length
|
111 |
+
source_mask+=[0]*padding_length
|
112 |
+
|
113 |
+
#target
|
114 |
+
if stage=="test":
|
115 |
+
target_tokens = tokenizer.tokenize("None")
|
116 |
+
else:
|
117 |
+
target_tokens = tokenizer.tokenize(example.target)[:args.max_target_length-2]
|
118 |
+
target_tokens = [tokenizer.cls_token]+target_tokens+[tokenizer.sep_token]
|
119 |
+
target_ids = tokenizer.convert_tokens_to_ids(target_tokens)
|
120 |
+
target_mask = [1] *len(target_ids)
|
121 |
+
padding_length = args.max_target_length - len(target_ids)
|
122 |
+
target_ids+=[tokenizer.pad_token_id]*padding_length
|
123 |
+
target_mask+=[0]*padding_length
|
124 |
+
|
125 |
+
if example_index < 5:
|
126 |
+
if stage=='train':
|
127 |
+
logger.info("*** Example ***")
|
128 |
+
logger.info("idx: {}".format(example.idx))
|
129 |
+
|
130 |
+
logger.info("source_tokens: {}".format([x.replace('\u0120','_') for x in source_tokens]))
|
131 |
+
logger.info("source_ids: {}".format(' '.join(map(str, source_ids))))
|
132 |
+
logger.info("source_mask: {}".format(' '.join(map(str, source_mask))))
|
133 |
+
|
134 |
+
logger.info("target_tokens: {}".format([x.replace('\u0120','_') for x in target_tokens]))
|
135 |
+
logger.info("target_ids: {}".format(' '.join(map(str, target_ids))))
|
136 |
+
logger.info("target_mask: {}".format(' '.join(map(str, target_mask))))
|
137 |
+
|
138 |
+
features.append(
|
139 |
+
InputFeatures(
|
140 |
+
example_index,
|
141 |
+
source_ids,
|
142 |
+
target_ids,
|
143 |
+
source_mask,
|
144 |
+
target_mask,
|
145 |
+
)
|
146 |
+
)
|
147 |
+
return features
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
def set_seed(seed=42):
|
152 |
+
random.seed(seed)
|
153 |
+
os.environ['PYHTONHASHSEED'] = str(seed)
|
154 |
+
np.random.seed(seed)
|
155 |
+
torch.manual_seed(seed)
|
156 |
+
torch.cuda.manual_seed(seed)
|
157 |
+
torch.backends.cudnn.deterministic = True
|
158 |
+
|
159 |
+
def main():
|
160 |
+
parser = argparse.ArgumentParser()
|
161 |
+
|
162 |
+
## Required parameters
|
163 |
+
parser.add_argument("--model_type", default=None, type=str, required=True,
|
164 |
+
help="Model type: e.g. roberta")
|
165 |
+
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
|
166 |
+
help="Path to pre-trained model: e.g. roberta-base" )
|
167 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
168 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
169 |
+
parser.add_argument("--load_model_path", default=None, type=str,
|
170 |
+
help="Path to trained model: Should contain the .bin files" )
|
171 |
+
## Other parameters
|
172 |
+
parser.add_argument("--train_filename", default=None, type=str,
|
173 |
+
help="The train filename. Should contain the .jsonl files for this task.")
|
174 |
+
parser.add_argument("--dev_filename", default=None, type=str,
|
175 |
+
help="The dev filename. Should contain the .jsonl files for this task.")
|
176 |
+
parser.add_argument("--test_filename", default=None, type=str,
|
177 |
+
help="The test filename. Should contain the .jsonl files for this task.")
|
178 |
+
|
179 |
+
parser.add_argument("--config_name", default="", type=str,
|
180 |
+
help="Pretrained config name or path if not the same as model_name")
|
181 |
+
parser.add_argument("--tokenizer_name", default="", type=str,
|
182 |
+
help="Pretrained tokenizer name or path if not the same as model_name")
|
183 |
+
parser.add_argument("--max_source_length", default=64, type=int,
|
184 |
+
help="The maximum total source sequence length after tokenization. Sequences longer "
|
185 |
+
"than this will be truncated, sequences shorter will be padded.")
|
186 |
+
parser.add_argument("--max_target_length", default=32, type=int,
|
187 |
+
help="The maximum total target sequence length after tokenization. Sequences longer "
|
188 |
+
"than this will be truncated, sequences shorter will be padded.")
|
189 |
+
|
190 |
+
parser.add_argument("--do_train", action='store_true',
|
191 |
+
help="Whether to run training.")
|
192 |
+
parser.add_argument("--do_eval", action='store_true',
|
193 |
+
help="Whether to run eval on the dev set.")
|
194 |
+
parser.add_argument("--do_test", action='store_true',
|
195 |
+
help="Whether to run eval on the dev set.")
|
196 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
197 |
+
help="Set this flag if you are using an uncased model.")
|
198 |
+
parser.add_argument("--no_cuda", action='store_true',
|
199 |
+
help="Avoid using CUDA when available")
|
200 |
+
|
201 |
+
parser.add_argument("--train_batch_size", default=8, type=int,
|
202 |
+
help="Batch size per GPU/CPU for training.")
|
203 |
+
parser.add_argument("--eval_batch_size", default=8, type=int,
|
204 |
+
help="Batch size per GPU/CPU for evaluation.")
|
205 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
206 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
207 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
208 |
+
help="The initial learning rate for Adam.")
|
209 |
+
parser.add_argument("--beam_size", default=10, type=int,
|
210 |
+
help="beam size for beam search")
|
211 |
+
parser.add_argument("--weight_decay", default=0.0, type=float,
|
212 |
+
help="Weight deay if we apply some.")
|
213 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
214 |
+
help="Epsilon for Adam optimizer.")
|
215 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
216 |
+
help="Max gradient norm.")
|
217 |
+
parser.add_argument("--num_train_epochs", default=3, type=int,
|
218 |
+
help="Total number of training epochs to perform.")
|
219 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
220 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
221 |
+
parser.add_argument("--eval_steps", default=-1, type=int,
|
222 |
+
help="")
|
223 |
+
parser.add_argument("--train_steps", default=-1, type=int,
|
224 |
+
help="")
|
225 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
226 |
+
help="Linear warmup over warmup_steps.")
|
227 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
228 |
+
help="For distributed training: local_rank")
|
229 |
+
parser.add_argument('--seed', type=int, default=42,
|
230 |
+
help="random seed for initialization")
|
231 |
+
# print arguments
|
232 |
+
args = parser.parse_args()
|
233 |
+
logger.info(args)
|
234 |
+
|
235 |
+
# Setup CUDA, GPU & distributed training
|
236 |
+
if args.local_rank == -1 or args.no_cuda:
|
237 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
238 |
+
args.n_gpu = torch.cuda.device_count()
|
239 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
240 |
+
torch.cuda.set_device(args.local_rank)
|
241 |
+
device = torch.device("cuda", args.local_rank)
|
242 |
+
torch.distributed.init_process_group(backend='nccl')
|
243 |
+
args.n_gpu = 1
|
244 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
|
245 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))
|
246 |
+
args.device = device
|
247 |
+
# Set seed
|
248 |
+
set_seed(args.seed)
|
249 |
+
# make dir if output_dir not exist
|
250 |
+
if os.path.exists(args.output_dir) is False:
|
251 |
+
os.makedirs(args.output_dir)
|
252 |
+
|
253 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
254 |
+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
|
255 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,do_lower_case=args.do_lower_case)
|
256 |
+
|
257 |
+
#budild model
|
258 |
+
encoder = model_class.from_pretrained(args.model_name_or_path,config=config)
|
259 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads)
|
260 |
+
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
|
261 |
+
model=Seq2Seq(encoder=encoder,decoder=decoder,config=config,
|
262 |
+
beam_size=args.beam_size,max_length=args.max_target_length,
|
263 |
+
sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id)
|
264 |
+
if args.load_model_path is not None:
|
265 |
+
logger.info("reload model from {}".format(args.load_model_path))
|
266 |
+
model.load_state_dict(torch.load(args.load_model_path))
|
267 |
+
|
268 |
+
model.to(device)
|
269 |
+
if args.local_rank != -1:
|
270 |
+
# Distributed training
|
271 |
+
try:
|
272 |
+
from apex.parallel import DistributedDataParallel as DDP
|
273 |
+
except ImportError:
|
274 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
|
275 |
+
|
276 |
+
model = DDP(model)
|
277 |
+
elif args.n_gpu > 1:
|
278 |
+
# multi-gpu training
|
279 |
+
model = torch.nn.DataParallel(model)
|
280 |
+
|
281 |
+
if args.do_train:
|
282 |
+
# Prepare training data loader
|
283 |
+
train_examples = read_examples(args.train_filename)
|
284 |
+
train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train')
|
285 |
+
all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long)
|
286 |
+
all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long)
|
287 |
+
all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long)
|
288 |
+
all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long)
|
289 |
+
train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask)
|
290 |
+
|
291 |
+
if args.local_rank == -1:
|
292 |
+
train_sampler = RandomSampler(train_data)
|
293 |
+
else:
|
294 |
+
train_sampler = DistributedSampler(train_data)
|
295 |
+
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps)
|
296 |
+
|
297 |
+
num_train_optimization_steps = args.train_steps
|
298 |
+
|
299 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
300 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
301 |
+
optimizer_grouped_parameters = [
|
302 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
303 |
+
'weight_decay': args.weight_decay},
|
304 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
305 |
+
]
|
306 |
+
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
307 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
308 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
309 |
+
num_warmup_steps=int(t_total*0.1),
|
310 |
+
num_training_steps=t_total)
|
311 |
+
|
312 |
+
#Start training
|
313 |
+
logger.info("***** Running training *****")
|
314 |
+
logger.info(" Num examples = %d", len(train_examples))
|
315 |
+
logger.info(" Batch size = %d", args.train_batch_size)
|
316 |
+
logger.info(" Num epoch = %d", args.num_train_epochs)
|
317 |
+
|
318 |
+
|
319 |
+
model.train()
|
320 |
+
dev_dataset={}
|
321 |
+
nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6
|
322 |
+
for epoch in range(args.num_train_epochs):
|
323 |
+
bar = tqdm(train_dataloader,total=len(train_dataloader))
|
324 |
+
for batch in bar:
|
325 |
+
batch = tuple(t.to(device) for t in batch)
|
326 |
+
source_ids,source_mask,target_ids,target_mask = batch
|
327 |
+
loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,target_ids=target_ids,target_mask=target_mask)
|
328 |
+
|
329 |
+
if args.n_gpu > 1:
|
330 |
+
loss = loss.mean() # mean() to average on multi-gpu.
|
331 |
+
if args.gradient_accumulation_steps > 1:
|
332 |
+
loss = loss / args.gradient_accumulation_steps
|
333 |
+
tr_loss += loss.item()
|
334 |
+
train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4)
|
335 |
+
bar.set_description("epoch {} loss {}".format(epoch,train_loss))
|
336 |
+
nb_tr_examples += source_ids.size(0)
|
337 |
+
nb_tr_steps += 1
|
338 |
+
loss.backward()
|
339 |
+
|
340 |
+
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
|
341 |
+
#Update parameters
|
342 |
+
optimizer.step()
|
343 |
+
optimizer.zero_grad()
|
344 |
+
scheduler.step()
|
345 |
+
global_step += 1
|
346 |
+
|
347 |
+
if args.do_eval:
|
348 |
+
#Eval model with dev dataset
|
349 |
+
tr_loss = 0
|
350 |
+
nb_tr_examples, nb_tr_steps = 0, 0
|
351 |
+
eval_flag=False
|
352 |
+
if 'dev_loss' in dev_dataset:
|
353 |
+
eval_examples,eval_data=dev_dataset['dev_loss']
|
354 |
+
else:
|
355 |
+
eval_examples = read_examples(args.dev_filename)
|
356 |
+
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
|
357 |
+
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
|
358 |
+
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
|
359 |
+
all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long)
|
360 |
+
all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long)
|
361 |
+
eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask)
|
362 |
+
dev_dataset['dev_loss']=eval_examples,eval_data
|
363 |
+
eval_sampler = SequentialSampler(eval_data)
|
364 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
365 |
+
|
366 |
+
logger.info("\n***** Running evaluation *****")
|
367 |
+
logger.info(" Num examples = %d", len(eval_examples))
|
368 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
369 |
+
|
370 |
+
#Start Evaling model
|
371 |
+
model.eval()
|
372 |
+
eval_loss,tokens_num = 0,0
|
373 |
+
for batch in eval_dataloader:
|
374 |
+
batch = tuple(t.to(device) for t in batch)
|
375 |
+
source_ids,source_mask,target_ids,target_mask = batch
|
376 |
+
|
377 |
+
with torch.no_grad():
|
378 |
+
_,loss,num = model(source_ids=source_ids,source_mask=source_mask,
|
379 |
+
target_ids=target_ids,target_mask=target_mask)
|
380 |
+
eval_loss += loss.sum().item()
|
381 |
+
tokens_num += num.sum().item()
|
382 |
+
#Pring loss of dev dataset
|
383 |
+
model.train()
|
384 |
+
eval_loss = eval_loss / tokens_num
|
385 |
+
result = {'eval_ppl': round(np.exp(eval_loss),5),
|
386 |
+
'global_step': global_step+1,
|
387 |
+
'train_loss': round(train_loss,5)}
|
388 |
+
for key in sorted(result.keys()):
|
389 |
+
logger.info(" %s = %s", key, str(result[key]))
|
390 |
+
logger.info(" "+"*"*20)
|
391 |
+
|
392 |
+
#save last checkpoint
|
393 |
+
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
|
394 |
+
if not os.path.exists(last_output_dir):
|
395 |
+
os.makedirs(last_output_dir)
|
396 |
+
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
397 |
+
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
|
398 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
399 |
+
if eval_loss<best_loss:
|
400 |
+
logger.info(" Best ppl:%s",round(np.exp(eval_loss),5))
|
401 |
+
logger.info(" "+"*"*20)
|
402 |
+
best_loss=eval_loss
|
403 |
+
# Save best checkpoint for best ppl
|
404 |
+
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
|
405 |
+
if not os.path.exists(output_dir):
|
406 |
+
os.makedirs(output_dir)
|
407 |
+
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
408 |
+
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
|
409 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
410 |
+
|
411 |
+
|
412 |
+
#Calculate bleu
|
413 |
+
if 'dev_bleu' in dev_dataset:
|
414 |
+
eval_examples,eval_data=dev_dataset['dev_bleu']
|
415 |
+
else:
|
416 |
+
eval_examples = read_examples(args.dev_filename)
|
417 |
+
eval_examples = random.sample(eval_examples,min(1000,len(eval_examples)))
|
418 |
+
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
|
419 |
+
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
|
420 |
+
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
|
421 |
+
eval_data = TensorDataset(all_source_ids,all_source_mask)
|
422 |
+
dev_dataset['dev_bleu']=eval_examples,eval_data
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
eval_sampler = SequentialSampler(eval_data)
|
427 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
428 |
+
|
429 |
+
model.eval()
|
430 |
+
p=[]
|
431 |
+
for batch in eval_dataloader:
|
432 |
+
batch = tuple(t.to(device) for t in batch)
|
433 |
+
source_ids,source_mask= batch
|
434 |
+
with torch.no_grad():
|
435 |
+
preds = model(source_ids=source_ids,source_mask=source_mask)
|
436 |
+
for pred in preds:
|
437 |
+
t=pred[0].cpu().numpy()
|
438 |
+
t=list(t)
|
439 |
+
if 0 in t:
|
440 |
+
t=t[:t.index(0)]
|
441 |
+
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
|
442 |
+
p.append(text)
|
443 |
+
model.train()
|
444 |
+
predictions=[]
|
445 |
+
with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1:
|
446 |
+
for ref,gold in zip(p,eval_examples):
|
447 |
+
predictions.append(str(gold.idx)+'\t'+ref)
|
448 |
+
f.write(str(gold.idx)+'\t'+ref+'\n')
|
449 |
+
f1.write(str(gold.idx)+'\t'+gold.target+'\n')
|
450 |
+
|
451 |
+
(goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "dev.gold"))
|
452 |
+
dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0],2)
|
453 |
+
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
|
454 |
+
logger.info(" "+"*"*20)
|
455 |
+
if dev_bleu>best_bleu:
|
456 |
+
logger.info(" Best bleu:%s",dev_bleu)
|
457 |
+
logger.info(" "+"*"*20)
|
458 |
+
best_bleu=dev_bleu
|
459 |
+
# Save best checkpoint for best bleu
|
460 |
+
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
|
461 |
+
if not os.path.exists(output_dir):
|
462 |
+
os.makedirs(output_dir)
|
463 |
+
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
464 |
+
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
|
465 |
+
torch.save(model_to_save.state_dict(), output_model_file)
|
466 |
+
|
467 |
+
# 每一轮记录checkpoint
|
468 |
+
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(epoch + 1))
|
469 |
+
if not os.path.exists(output_dir):
|
470 |
+
os.makedirs(output_dir)
|
471 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
472 |
+
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
|
473 |
+
logger.info("Saving model checkpoint to %s", ckpt_output_path)
|
474 |
+
torch.save(model_to_save.state_dict(), ckpt_output_path)
|
475 |
+
# 每一轮记录表征
|
476 |
+
# logger.info("Saving training feature")
|
477 |
+
# train_dataloader_bs1 = DataLoader(train_dataset, sampler=train_sampler, batch_size=1,num_workers=4,pin_memory=True)
|
478 |
+
# train_feature = []
|
479 |
+
# for batch in tqdm(train_dataloader_bs1):
|
480 |
+
# batch = tuple(t.to(device) for t in batch)
|
481 |
+
# source_ids, source_mask, _, _ = batch
|
482 |
+
# model.eval()
|
483 |
+
# with torch.no_grad():
|
484 |
+
# tf = model.feature(source_ids, source_mask)
|
485 |
+
# train_feature.append(tf.cpu().detach().numpy())
|
486 |
+
# feature_output_path = os.path.join(output_dir, 'feature.pkl')
|
487 |
+
# with open(feature_output_path, 'wb') as f:
|
488 |
+
# pickle.dump(train_feature, f)
|
489 |
+
|
490 |
+
if args.do_test:
|
491 |
+
files=[]
|
492 |
+
if args.dev_filename is not None:
|
493 |
+
files.append(args.dev_filename)
|
494 |
+
if args.test_filename is not None:
|
495 |
+
files.append(args.test_filename)
|
496 |
+
for idx,file in enumerate(files):
|
497 |
+
logger.info("Test file: {}".format(file))
|
498 |
+
eval_examples = read_examples(file)
|
499 |
+
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
|
500 |
+
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
|
501 |
+
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
|
502 |
+
eval_data = TensorDataset(all_source_ids,all_source_mask)
|
503 |
+
|
504 |
+
# Calculate bleu
|
505 |
+
eval_sampler = SequentialSampler(eval_data)
|
506 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
507 |
+
|
508 |
+
model.eval()
|
509 |
+
p=[]
|
510 |
+
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
|
511 |
+
batch = tuple(t.to(device) for t in batch)
|
512 |
+
source_ids,source_mask= batch
|
513 |
+
with torch.no_grad():
|
514 |
+
preds = model(source_ids=source_ids,source_mask=source_mask)
|
515 |
+
for pred in preds:
|
516 |
+
t=pred[0].cpu().numpy()
|
517 |
+
t=list(t)
|
518 |
+
if 0 in t:
|
519 |
+
t=t[:t.index(0)]
|
520 |
+
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
|
521 |
+
p.append(text)
|
522 |
+
model.train()
|
523 |
+
predictions=[]
|
524 |
+
with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1:
|
525 |
+
for ref,gold in zip(p,eval_examples):
|
526 |
+
predictions.append(str(gold.idx)+'\t'+ref)
|
527 |
+
f.write(str(gold.idx)+'\t'+ref+'\n')
|
528 |
+
f1.write(str(gold.idx)+'\t'+gold.target+'\n')
|
529 |
+
|
530 |
+
(goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "test_{}.gold".format(idx)))
|
531 |
+
dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0],2)
|
532 |
+
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
|
533 |
+
logger.info(" "+"*"*20)
|
534 |
+
|
535 |
+
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
if __name__ == "__main__":
|
542 |
+
main()
|
543 |
+
|
544 |
+
|
Code-Text/code-to-text/code/test.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lang=python #programming language
|
2 |
+
batch_size=64
|
3 |
+
beam_size=10
|
4 |
+
source_length=256
|
5 |
+
target_length=128
|
6 |
+
data_dir=../dataset
|
7 |
+
output_dir=../model/$lang
|
8 |
+
dev_file=$data_dir/$lang/valid.jsonl
|
9 |
+
test_file=$data_dir/$lang/test.jsonl
|
10 |
+
test_model=$output_dir/epoch_10/subject_model.pth #checkpoint for test
|
11 |
+
|
12 |
+
CUDA_VISIBLE_DEVICES=2,3 python run.py \
|
13 |
+
--do_test --model_type roberta \
|
14 |
+
--model_name_or_path microsoft/codebert-base \
|
15 |
+
--load_model_path $test_model \
|
16 |
+
--dev_filename $dev_file \
|
17 |
+
--test_filename $test_file \
|
18 |
+
--output_dir $output_dir \
|
19 |
+
--max_source_length $source_length \
|
20 |
+
--max_target_length $target_length \
|
21 |
+
--beam_size $beam_size \
|
22 |
+
--eval_batch_size $batch_size
|
Code-Text/code-to-text/code/train.sh
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lang=python #programming language
|
2 |
+
lr=5e-5
|
3 |
+
batch_size=32
|
4 |
+
beam_size=10
|
5 |
+
source_length=256
|
6 |
+
target_length=128
|
7 |
+
data_dir=../dataset
|
8 |
+
output_dir=../model/$lang
|
9 |
+
train_file=$data_dir/$lang/train.jsonl
|
10 |
+
dev_file=$data_dir/$lang/valid.jsonl
|
11 |
+
epochs=10
|
12 |
+
pretrained_model=microsoft/codebert-base #Roberta: roberta-base
|
13 |
+
|
14 |
+
CUDA_VISIBLE_DEVICES=2,3 python run.py \
|
15 |
+
--do_train \
|
16 |
+
--do_eval \
|
17 |
+
--model_type roberta \
|
18 |
+
--model_name_or_path $pretrained_model \
|
19 |
+
--train_filename $train_file \
|
20 |
+
--dev_filename $dev_file \
|
21 |
+
--output_dir $output_dir \
|
22 |
+
--max_source_length $source_length \
|
23 |
+
--max_target_length $target_length \
|
24 |
+
--beam_size $beam_size \
|
25 |
+
--train_batch_size $batch_size \
|
26 |
+
--eval_batch_size $batch_size \
|
27 |
+
--learning_rate $lr \
|
28 |
+
--num_train_epochs $epochs
|
Code-Text/code-to-text/data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ee5eea169be9d0516dcb0f100ec1932b830b37b329d96bfa87c8f76ee7da380
|
3 |
+
size 381246360
|