''' EfficientNet in PyTorch. Paper: "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py 主要特点: 1. 使用MBConv作为基本模块,包含SE注意力机制 2. 通过复合缩放方法(compound scaling)同时调整网络的宽度、深度和分辨率 3. 使用Swish激活函数和DropConnect正则化 ''' import torch import torch.nn as nn import torch.nn.functional as F import math def swish(x): """Swish激活函数: x * sigmoid(x)""" return x * x.sigmoid() def drop_connect(x, drop_ratio): """DropConnect正则化 Args: x: 输入tensor drop_ratio: 丢弃率 Returns: 经过DropConnect处理的tensor """ keep_ratio = 1.0 - drop_ratio mask = torch.empty([x.shape[0], 1, 1, 1], dtype=x.dtype, device=x.device) mask.bernoulli_(keep_ratio) x.div_(keep_ratio) x.mul_(mask) return x class SE(nn.Module): '''Squeeze-and-Excitation注意力模块 Args: in_channels: 输入通道数 se_channels: SE模块中间层的通道数 ''' def __init__(self, in_channels, se_channels): super(SE, self).__init__() self.se1 = nn.Conv2d(in_channels, se_channels, kernel_size=1, bias=True) self.se2 = nn.Conv2d(se_channels, in_channels, kernel_size=1, bias=True) def forward(self, x): out = F.adaptive_avg_pool2d(x, (1, 1)) # 全局平均池化 out = swish(self.se1(out)) out = self.se2(out).sigmoid() return x * out # 特征重标定 class MBConv(nn.Module): '''MBConv模块: Mobile Inverted Bottleneck Convolution Args: in_channels: 输入通道数 out_channels: 输出通道数 kernel_size: 卷积核大小 stride: 步长 expand_ratio: 扩展比率 se_ratio: SE模块的压缩比率 drop_rate: DropConnect的丢弃率 ''' def __init__(self, in_channels, out_channels, kernel_size, stride, expand_ratio=1, se_ratio=0.25, drop_rate=0.): super(MBConv, self).__init__() self.stride = stride self.drop_rate = drop_rate self.expand_ratio = expand_ratio # Expansion phase channels = expand_ratio * in_channels self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(channels) # Depthwise conv self.conv2 = nn.Conv2d(channels, channels, kernel_size=kernel_size, stride=stride, padding=(1 if kernel_size == 3 else 2), groups=channels, bias=False) self.bn2 = nn.BatchNorm2d(channels) # SE layers se_channels = int(in_channels * se_ratio) self.se = SE(channels, se_channels) # Output phase self.conv3 = nn.Conv2d(channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) # Shortcut connection self.has_skip = (stride == 1) and (in_channels == out_channels) def forward(self, x): # Expansion out = x if self.expand_ratio == 1 else swish(self.bn1(self.conv1(x))) # Depthwise convolution out = swish(self.bn2(self.conv2(out))) # Squeeze-and-excitation out = self.se(out) # Pointwise convolution out = self.bn3(self.conv3(out)) # Shortcut if self.has_skip: if self.training and self.drop_rate > 0: out = drop_connect(out, self.drop_rate) out = out + x return out class EfficientNet(nn.Module): '''EfficientNet模型 Args: width_coefficient: 宽度系数 depth_coefficient: 深度系数 dropout_rate: 分类层的dropout率 num_classes: 分类数量 ''' def __init__(self, width_coefficient=1.0, depth_coefficient=1.0, dropout_rate=0.2, num_classes=10): super(EfficientNet, self).__init__() # 模型配置 cfg = { 'num_blocks': [1, 2, 2, 3, 3, 4, 1], # 每个stage的block数量 'expansion': [1, 6, 6, 6, 6, 6, 6], # 扩展比率 'out_channels': [16, 24, 40, 80, 112, 192, 320], # 输出通道数 'kernel_size': [3, 3, 5, 3, 5, 5, 3], # 卷积核大小 'stride': [1, 2, 2, 2, 1, 2, 1], # 步长 'dropout_rate': dropout_rate, 'drop_connect_rate': 0.2, } self.cfg = cfg self.width_coefficient = width_coefficient self.depth_coefficient = depth_coefficient # Stem layer self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) # Build blocks self.layers = self._make_layers(in_channels=32) # Head layer final_channels = cfg['out_channels'][-1] * int(width_coefficient) self.linear = nn.Linear(final_channels, num_classes) def _make_layers(self, in_channels): layers = [] cfg = [self.cfg[k] for k in ['expansion', 'out_channels', 'num_blocks', 'kernel_size', 'stride']] blocks = sum(self.cfg['num_blocks']) b = 0 # 用于计算drop_connect_rate for expansion, out_channels, num_blocks, kernel_size, stride in zip(*cfg): out_channels = int(out_channels * self.width_coefficient) num_blocks = int(math.ceil(num_blocks * self.depth_coefficient)) for i in range(num_blocks): stride_i = stride if i == 0 else 1 drop_rate = self.cfg['drop_connect_rate'] * b / blocks layers.append( MBConv(in_channels, out_channels, kernel_size, stride_i, expansion, se_ratio=0.25, drop_rate=drop_rate)) in_channels = out_channels b += 1 return nn.Sequential(*layers) def forward(self, x): # Stem out = swish(self.bn1(self.conv1(x))) # Blocks out = self.layers(out) # Head out = F.adaptive_avg_pool2d(out, 1) out = out.view(out.size(0), -1) if self.training and self.cfg['dropout_rate'] > 0: out = F.dropout(out, p=self.cfg['dropout_rate']) out = self.linear(out) return out def EfficientNetB0(num_classes=10): """EfficientNet-B0""" return EfficientNet(width_coefficient=1.0, depth_coefficient=1.0, dropout_rate=0.2, num_classes=num_classes) def EfficientNetB1(num_classes=10): """EfficientNet-B1""" return EfficientNet(width_coefficient=1.0, depth_coefficient=1.1, dropout_rate=0.2, num_classes=num_classes) def EfficientNetB2(num_classes=10): """EfficientNet-B2""" return EfficientNet(width_coefficient=1.1, depth_coefficient=1.2, dropout_rate=0.3, num_classes=num_classes) def EfficientNetB3(num_classes=10): """EfficientNet-B3""" return EfficientNet(width_coefficient=1.2, depth_coefficient=1.4, dropout_rate=0.3, num_classes=num_classes) def EfficientNetB4(num_classes=10): """EfficientNet-B4""" return EfficientNet(width_coefficient=1.4, depth_coefficient=1.8, dropout_rate=0.4, num_classes=num_classes) def EfficientNetB5(num_classes=10): """EfficientNet-B5""" return EfficientNet(width_coefficient=1.6, depth_coefficient=2.2, dropout_rate=0.4, num_classes=num_classes) def EfficientNetB6(num_classes=10): """EfficientNet-B6""" return EfficientNet(width_coefficient=1.8, depth_coefficient=2.6, dropout_rate=0.5, num_classes=num_classes) def EfficientNetB7(num_classes=10): """EfficientNet-B7""" return EfficientNet(width_coefficient=2.0, depth_coefficient=3.1, dropout_rate=0.5, num_classes=num_classes) def test(): """测试函数""" net = EfficientNetB0() x = torch.randn(1, 3, 32, 32) y = net(x) print(y.size()) from torchinfo import summary device = 'cuda' if torch.cuda.is_available() else 'cpu' net = net.to(device) summary(net, (1, 3, 32, 32)) if __name__ == '__main__': test()