""" DenseNet in pytorch see the details in papaer [1] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger. Densely Connected Convolutional Networks https://arxiv.org/abs/1608.06993v5 """ import torch import torch.nn as nn import math class Bottleneck(nn.Module): """ Dense Block 这里的growth_rate=out_channels, 就是每个Block自己输出的通道数。 先通过1x1卷积层,将通道数缩小为4 * growth_rate,然后再通过3x3卷积层降低到growth_rate。 """ # 通常1×1卷积的通道数为GrowthRate的4倍 expansion = 4 def __init__(self, in_channels, growth_rate): super(Bottleneck, self).__init__() zip_channels = self.expansion * growth_rate self.features = nn.Sequential( nn.BatchNorm2d(in_channels), nn.ReLU(True), nn.Conv2d(in_channels, zip_channels, kernel_size=1, bias=False), nn.BatchNorm2d(zip_channels), nn.ReLU(True), nn.Conv2d(zip_channels, growth_rate, kernel_size=3, padding=1, bias=False) ) def forward(self, x): out = self.features(x) out = torch.cat([out, x], 1) return out class Transition(nn.Module): """ 改变维数的Transition层 具体包括BN、ReLU、1×1卷积(Conv)、2×2平均池化操作 先通过1x1的卷积层减少channels,再通过2x2的平均池化层缩小feature-map """ # 1×1卷积的作用是降维,起到压缩模型的作用,而平均池化则是降低特征图的尺寸。 def __init__(self, in_channels, out_channels): super(Transition, self).__init__() self.features = nn.Sequential( nn.BatchNorm2d(in_channels), nn.ReLU(True), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), nn.AvgPool2d(2) ) def forward(self, x): out = self.features(x) return out class DenseNet(nn.Module): """ Dense Net paper中growth_rate取12,维度压缩的参数θ,即reduction取0.5 且初始化方法为kaiming_normal() num_blocks为每段网络中的DenseBlock数量 DenseNet和ResNet一样也是六段式网络(一段卷积+四段Dense+平均池化层),最后FC层。 第一段将维数从3变到2 * growth_rate (3, 32, 32) -> [Conv2d] -> (24, 32, 32) -> [layer1] -> (48, 16, 16) -> [layer2] ->(96, 8, 8) -> [layer3] -> (192, 4, 4) -> [layer4] -> (384, 4, 4) -> [AvgPool] ->(384, 1, 1) -> [Linear] -> (10) """ def __init__(self, num_blocks, growth_rate=12, reduction=0.5, num_classes=10, init_weights=True): super(DenseNet, self).__init__() self.growth_rate = growth_rate self.reduction = reduction num_channels = 2 * growth_rate self.features = nn.Conv2d(3, num_channels, kernel_size=3, padding=1, bias=False) self.layer1, num_channels = self._make_dense_layer(num_channels, num_blocks[0]) self.layer2, num_channels = self._make_dense_layer(num_channels, num_blocks[1]) self.layer3, num_channels = self._make_dense_layer(num_channels, num_blocks[2]) self.layer4, num_channels = self._make_dense_layer(num_channels, num_blocks[3], transition=False) self.avg_pool = nn.Sequential( nn.BatchNorm2d(num_channels), nn.ReLU(True), nn.AvgPool2d(4), ) self.classifier = nn.Linear(num_channels, num_classes) if init_weights: self._initialize_weights() def _make_dense_layer(self, in_channels, nblock, transition=True): layers = [] for i in range(nblock): layers += [Bottleneck(in_channels, self.growth_rate)] in_channels += self.growth_rate out_channels = in_channels if transition: out_channels = int(math.floor(in_channels * self.reduction)) layers += [Transition(in_channels, out_channels)] return nn.Sequential(*layers), out_channels def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def forward(self, x): out = self.features(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.classifier(out) return out def DenseNet121(): return DenseNet([6,12,24,16], growth_rate=32) def DenseNet169(): return DenseNet([6,12,32,32], growth_rate=32) def DenseNet201(): return DenseNet([6,12,48,32], growth_rate=32) def DenseNet161(): return DenseNet([6,12,36,24], growth_rate=48) def densenet_cifar(): return DenseNet([6,12,24,16], growth_rate=12) def test(): net = densenet_cifar() x = torch.randn(1,3,32,32) y = net(x) print(y.size()) from torchinfo import summary device = 'cuda' if torch.cuda.is_available() else 'cpu' net = net.to(device) summary(net,(1,3,32,32))