import os import time from rdkit import Chem from rdkit import RDLogger; from torch.utils.data import Dataset import torch.nn.functional as F from tqdm import tqdm RDLogger.DisableLog('rdApp.*') import torch import torch.nn as nn import torch.optim as optim import pickle import numpy as np import matplotlib.pyplot as plt import math import dgl import networkx as nx atom_number_index_dict ={ 1:0, # H 6:1, # C 7:2, # N 8:3, # O 9:4 # F } # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") atom_index_number_dict = {v: k for k, v in atom_number_index_dict.items()} max_atom_number = max(atom_number_index_dict.keys()) atom_number2index_tensor = torch.full((max_atom_number + 1,), -1) for k, v in atom_number_index_dict.items(): atom_number2index_tensor[k] = v atom_index2number_tensor = torch.tensor([atom_index_number_dict[i] for i in range(len(atom_index_number_dict))]) def atom_number2index(atom_numbers): return atom_number2index_tensor[atom_numbers] def atom_index2number(atom_indexes): return atom_index2number_tensor[atom_indexes] from dgl.data import QM9Dataset from torch.utils.data import SubsetRandomSampler from dgl.dataloading import GraphDataLoader from multiprocessing import Pool dataset = QM9Dataset(label_keys=['mu', 'gap'], cutoff=5.0) dataset_length = len(dataset) train_idx = torch.arange(dataset_length) # def preprocess_graph(data): # g, label = data # g.ndata["Z_index"] = atom_number2index(g.ndata["Z"]) # return g, label # def preprocess_dataset(dataset): # with Pool(processes=4) as pool: # 设置进程数 # with tqdm(total=len(dataset)) as pbar: # 初始化进度条 # results = [] # for result in pool.imap(preprocess_graph, dataset): # 使用 imap 逐步处理 # results.append(result) # pbar.update(1) # 更新进度条 # return results # # 使用多进程预处理数据集 # dataset = preprocess_dataset(dataset) # def collate_fn(batch): # # print(batch) # graphs, labels = map(list, zip(*batch)) # for g in graphs: # pass # # g.ndata["Z_index"] = atom_number2index(g.ndata["Z"]) # # g.ndata["R"]->the coordinates of each atom[num_nodes,3], g.ndata["Z"]->the atomic number(H:1,C:6) [num_nodes] # # g.ndata["Z_index"] = torch.tensor([atom_number2index(z.item()) for z in g.ndata["Z"]]) # batched_graph = dgl.batch(graphs) # return batched_graph, torch.stack(labels) myGLoader = GraphDataLoader(dataset,batch_size=32,pin_memory=True,num_workers=8) # for batch in tqdm(myGLoader): # pass # # print(batch) from functools import partial import sys sys.path.append("lib") from lib.metrics import sce_loss class GMae(nn.Module): def __init__(self, encoder,decoder, in_dim,hidden_dim,out_dim,mask_rate=0.3,replace_rate=0.1,alpha_l=2, embedding_layer_classes=5,embedding_layer_dim=4): super(GMae, self).__init__() self.Z_embedding = nn.Embedding(embedding_layer_classes,embedding_layer_dim) self.encoder = encoder self.decoder = decoder self.mask_rate = mask_rate self.replace_rate = replace_rate self.alpha_l = alpha_l self.in_dim = in_dim self.hidden_dim = hidden_dim self.out_dim = out_dim self.embedding_layer_classes = embedding_layer_classes self.embedding_layer_dim = embedding_layer_dim self.enc_mask_token = nn.Parameter(torch.zeros(1,in_dim)) self.criterion = partial(sce_loss, alpha=alpha_l) self.encoder_to_decoder = nn.Linear(hidden_dim, hidden_dim, bias=False) def encode_atom_index(self,Z_index): return self.Z_embedding(Z_index) def encoding_mask_noise(self, g, x, mask_rate=0.3): num_nodes = g.num_nodes() perm = torch.randperm(num_nodes, device=x.device) # random masking num_mask_nodes = int(mask_rate * num_nodes) mask_nodes = perm[: num_mask_nodes] keep_nodes = perm[num_mask_nodes: ] if self.replace_rate > 0: num_noise_nodes = int(self.replace_rate * num_mask_nodes) perm_mask = torch.randperm(num_mask_nodes, device=x.device) token_nodes = mask_nodes[perm_mask[: int((1-self.replace_rate) * num_mask_nodes)]] noise_nodes = mask_nodes[perm_mask[-int(self.replace_rate * num_mask_nodes):]] noise_to_be_chosen = torch.randperm(num_nodes, device=x.device)[:num_noise_nodes] out_x = x.clone() out_x[token_nodes] = 0.0 out_x[noise_nodes] = x[noise_to_be_chosen] else: out_x = x.clone() token_nodes = mask_nodes out_x[mask_nodes] = 0.0 out_x[token_nodes] += self.enc_mask_token use_g = g.clone() return use_g, out_x, (mask_nodes, keep_nodes) def mask_attr_prediction(self, g, x): use_g, use_x, (mask_nodes, keep_nodes) = self.encoding_mask_noise(g, x, self.mask_rate) enc_rep = self.encoder(use_g, use_x) # ---- attribute reconstruction ---- rep = self.encoder_to_decoder(enc_rep) recon = self.decoder(use_g, rep) x_init = x[mask_nodes] x_rec = recon[mask_nodes] loss = self.criterion(x_rec, x_init) return loss def embed(self, g, x): rep = self.encoder(g, x) return rep import dgl.nn as dglnn import torch.nn as nn import torch.nn.functional as F class SimpleGNN(nn.Module): def __init__(self, in_feats, hid_feats, out_feats): super().__init__() self.conv1 = dglnn.SAGEConv( in_feats=in_feats, out_feats=hid_feats,aggregator_type="mean") self.conv2 = dglnn.SAGEConv( in_feats=hid_feats, out_feats=out_feats,aggregator_type="mean") def forward(self, graph, inputs): # 输入是节点的特征 h = self.conv1(graph, inputs) h = F.relu(h) h = self.conv2(graph, h) return h sage_enc = SimpleGNN(in_feats=7,hid_feats=4,out_feats=4) sage_dec = SimpleGNN(in_feats=4,hid_feats=4,out_feats=7) gmae = GMae(sage_enc,sage_dec,7,4,7,replace_rate=0) epoches = 20 optimizer = optim.Adam(gmae.parameters(), lr=1e-3) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"epoch {0} started!") gmae.train() gmae.encoder.train() gmae.decoder.train() gmae.to(device) loss_epoch = 0 import os os.environ["CUDA_LAUNCH_BLOCKING"]="1" for batch in tqdm(myGLoader): optimizer.zero_grad() batch_g, _ = batch R = batch_g.ndata["R"].to(device) Z_index = batch_g.ndata["Z"].to(device) Z_emb = gmae.encode_atom_index(Z_index) # feat = torch.cat([R,Z_emb],dim=1) # batch_g = batch_g.to(device) # loss = gmae.mask_attr_prediction(batch_g, feat) # loss.backward() # optimizer.step() # loss_epoch+=loss.item() from datetime import datetime current_time = datetime.now().strftime("%m-%d@%H_%M") best_loss = 10000 for epoch in range(epoches): print(f"epoch {epoch} started!") gmae.train() gmae.encoder.train() gmae.decoder.train() gmae.to(device) loss_epoch = 0 for batch in myGLoader: optimizer.zero_grad() batch_g, _ = batch R = batch_g.ndata["R"].to(device) # Z_index = batch_g.ndata["Z_index"].to(device) Z_index = batch_g.ndata["Z_index"].to(device) Z_emb = gmae.encode_atom_index(Z_index) feat = torch.cat([R,Z_emb],dim=1) batch_g = batch_g.to(device) loss = gmae.mask_attr_prediction(batch_g, feat) loss.backward() optimizer.step() loss_epoch+=loss.item() if loss_epoch < best_loss: formatted_loss_epoch = f"{loss_epoch:.3f}" save_path = f"./experiments/consumption/gmae/{current_time}/gmae_epoch-{epoch}-{formatted_loss_epoch}.pt" save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir,exist_ok=True) torch.save(gmae.state_dict(), save_path) best_loss = loss_epoch print(f"best model saved-loss:{formatted_loss_epoch}-save_path:{save_path}") print(f"epoch {epoch}: loss {loss_epoch}")