# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss class Model(nn.Module): def __init__(self, encoder,config,tokenizer,args): super(Model, self).__init__() self.encoder = encoder self.config=config self.tokenizer=tokenizer self.args=args def forward(self, input_ids=None,p_input_ids=None,n_input_ids=None,labels=None): bs,_=input_ids.size() input_ids=torch.cat((input_ids,p_input_ids,n_input_ids),0) outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1)) if len(outputs) > 1: outputs = outputs[1] else: outputs = outputs[0][:, 0, :] outputs=outputs.split(bs,0) prob_1=(outputs[0]*outputs[1]).sum(-1) prob_2=(outputs[0]*outputs[2]).sum(-1) temp=torch.cat((outputs[0],outputs[1]),0) temp_labels=torch.cat((labels,labels),0) prob_3= torch.mm(outputs[0],temp.t()) mask=labels[:,None]==temp_labels[None,:] prob_3=prob_3*(1-mask.float())-1e9*mask.float() prob=torch.softmax(torch.cat((prob_1[:,None],prob_2[:,None],prob_3),-1),-1) loss=torch.log(prob[:,0]+1e-10) loss=-loss.mean() return loss,outputs[0]