# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import sys import json import numpy as np def read_answers(filename): answers={} with open(filename) as f: for line in f: line=line.strip() js=json.loads(line) answers[js['idx']]=js['target'] return answers def read_predictions(filename): predictions={} with open(filename) as f: for line in f: line=line.strip() idx,label=line.split() predictions[int(idx)]=int(label) return predictions def calculate_scores(answers,predictions): Acc=[] for key in answers: if key not in predictions: logging.error("Missing prediction for index {}.".format(key)) sys.exit() Acc.append(answers[key]==predictions[key]) scores={} scores['Acc']=np.mean(Acc) return scores def main(): import argparse parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for Defect Detection dataset.') parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() answers=read_answers(args.answers) predictions=read_predictions(args.predictions) scores=calculate_scores(answers,predictions) print(scores) if __name__ == '__main__': main()