# -*- coding:utf-8 -*- import numpy as np import torch import torch.nn.functional as F def masked_mape_np(y_true, y_pred, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(y_true) else: mask = np.not_equal(y_true, null_val) mask = mask.astype('float32') mask /= np.mean(mask) mape = np.abs(np.divide(np.subtract(y_pred, y_true).astype('float32'), y_true)) mape = np.nan_to_num(mask * mape) return np.mean(mape) def masked_mse(preds, labels, null_val=np.nan): if np.isnan(null_val): mask = ~torch.isnan(labels) else: mask = (labels != null_val) mask = mask.float() # print(mask.sum()) # print(mask.shape[0]*mask.shape[1]*mask.shape[2]) mask /= torch.mean((mask)) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) loss = (preds - labels) ** 2 loss = loss * mask loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def masked_rmse(preds, labels, null_val=np.nan): return torch.sqrt(masked_mse(preds=preds, labels=labels, null_val=null_val)) def masked_mae(preds, labels, null_val=np.nan): if np.isnan(null_val): mask = ~torch.isnan(labels) else: mask = (labels != null_val) mask = mask.float() mask /= torch.mean((mask)) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) loss = torch.abs(preds - labels) loss = loss * mask loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def masked_mae_test(y_true, y_pred, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(y_true) else: mask = np.not_equal(y_true, null_val) mask = mask.astype('float32') mask /= np.mean(mask) mae = np.abs(np.subtract(y_pred, y_true).astype('float32'), ) mae = np.nan_to_num(mask * mae) return np.mean(mae) def masked_rmse_test(y_true, y_pred, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(y_true) else: # null_val=null_val mask = np.not_equal(y_true, null_val) mask = mask.astype('float32') mask /= np.mean(mask) mse = ((y_pred - y_true) ** 2) mse = np.nan_to_num(mask * mse) return np.sqrt(np.mean(mse)) def sce_loss(x, y, alpha=3): x = F.normalize(x, p=2, dim=-1) y = F.normalize(y, p=2, dim=-1) # loss = - (x * y).sum(dim=-1) # loss = (x_h - y_h).norm(dim=1).pow(alpha) loss = (1 - (x * y).sum(dim=-1)).pow_(alpha) loss = loss.mean() return loss